2,557 research outputs found

    Co-evolution of Content Popularity and Delivery in Mobile P2P Networks

    Full text link
    Mobile P2P technology provides a scalable approach to content delivery to a large number of users on their mobile devices. In this work, we study the dissemination of a \emph{single} content (e.g., an item of news, a song or a video clip) among a population of mobile nodes. Each node in the population is either a \emph{destination} (interested in the content) or a potential \emph{relay} (not yet interested in the content). There is an interest evolution process by which nodes not yet interested in the content (i.e., relays) can become interested (i.e., become destinations) on learning about the popularity of the content (i.e., the number of already interested nodes). In our work, the interest in the content evolves under the \emph{linear threshold model}. The content is copied between nodes when they make random contact. For this we employ a controlled epidemic spread model. We model the joint evolution of the copying process and the interest evolution process, and derive the joint fluid limit ordinary differential equations. We then study the selection of the parameters under the content provider's control, for the optimization of various objective functions that aim at maximizing content popularity and efficient content delivery.Comment: 21 pages, 16 figure

    An autonomic delivery framework for HTTP adaptive streaming in multicast-enabled multimedia access networks

    Get PDF
    The consumption of multimedia services over HTTP-based delivery mechanisms has recently gained popularity due to their increased flexibility and reliability. Traditional broadcast TV channels are now offered over the Internet, in order to support Live TV for a broad range of consumer devices. Moreover, service providers can greatly benefit from offering external live content (e. g., YouTube, Hulu) in a managed way. Recently, HTTP Adaptive Streaming (HAS) techniques have been proposed in which video clients dynamically adapt their requested video quality level based on the current network and device state. Unlike linear TV, traditional HTTP- and HAS-based video streaming services depend on unicast sessions, leading to a network traffic load proportional to the number of multimedia consumers. In this paper we propose a novel HAS-based video delivery architecture, which features intelligent multicasting and caching in order to decrease the required bandwidth considerably in a Live TV scenario. Furthermore we discuss the autonomic selection of multicasted content to support Video on Demand (VoD) sessions. Experiments were conducted on a large scale and realistic emulation environment and compared with a traditional HAS-based media delivery setup using only unicast connections

    On the security of software-defined next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are ndergoing fundamental changes and many established concepts are being revisited. Future 5G network architectures will be designed to employ a wide range of new and emerging technologies such as Software Defined Networking (SDN) and Network Functions Virtualization (NFV). These create new virtual network elements each affecting the logic of the network management and operation, enabling the creation of new generation services with substantially higher data rates and lower delays. However, new security challenges and threats are also introduced. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a secure and reliable way. At the same time, novel 5G systems have proffered invaluable opportunities of developing novel solutions for attack prevention, management, and recovery. In this paper, first we discuss the main security threats and possible attack vectors in cellular networks. Second, driven by the emerging next-generation cellular networks, we discuss the architectural and functional requirements to enable appropriate levels of security

    Implementation and Evaluation of Mobile-Edge Computing Cooperative Caching

    Get PDF
    Recent expanding rise of mobile device users for cloud services leads to resource challenges in Mobile Network Operator's (MNO) network. This poses significant additional costs to MNOs and also results in poor user experience. Studies illustrate that large amount of traffic consumption in MNO's network is originated from the similar requests of users for the same popular contents over Internet. Therefore such networks suffer from delivering the same content multiple times through their connected gateways to the Internet backhaul. On the other hand, in content delivery networks (CDN), the delay caused by network latency is one of the biggest issues which impedes the efficient delivery and desirable user experience. Cooperative caching is one of the ways to handle the extra posed traffic by requesting popular contents repeatedly in MNO's network. Furthermore Mobile-Edge Computing (MEC) offers a resource rich environment and data locality to cloud applications. This helps to reduce the network latency time in CDN services. Thus in this Thesis an aggregation between Cooperative Caching and MEC concept has been considered. This Thesis demonstrates a design, implementation and evaluation for a Mobile-Edge computing Cooperative Caching system to deliver content to mobile users. A design is presented in a failure resilient and scalable practice using a light-weight synchronizing method. The system is implemented and deployed on Nokia Networks Radio Application Cloud Servers(Nokia Networks RACS) as intelligent MEC base-stations and finally the outcome of the system and the effect on bandwidth saving, CDN delay and user experience are evaluated

    Peering Strategic Game Models for Interdependent ISPs in Content Centric Internet

    Get PDF
    Emergent content-oriented networks prompt Internet service providers (ISPs) to evolve and take major responsibility for content delivery. Numerous content items and varying content popularities motivate interdependence between peering ISPs to elaborate their content caching and sharing strategies. In this paper, we propose the concept of peering for content exchange between interdependent ISPs in content centric Internet to minimize content delivery cost by a proper peering strategy. We model four peering strategic games to formulate four types of peering relationships between ISPs who are characterized by varying degrees of cooperative willingness from egoism to altruism and interconnected as profit-individuals or profit-coalition. Simulation results show the price of anarchy (PoA) and communication cost in the four games to validate that ISPs should decide their peering strategies by balancing intradomain content demand and interdomain peering relations for an optimal cost of content delivery
    corecore