68 research outputs found

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Ka-band integrated focal-plane arrays for two-way satellite communication

    Get PDF

    Active Integrated MIMO Antenna Design

    Get PDF

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    3D manufacturing using laser direct structuring and the application on the development of antenna systems

    Get PDF
    The development of radio systems is subject to constantly increasing demands. These concern the function to be implemented as well as the geometric dimensions of the RF devices in decreasing installation spaces. One resulting aspect is that the antenna can no longer be developed as a single component and be integrated subsequently. It is rather necessary to consider the installation space as a part of the antenna and to use it electromagnetically according to the requirements. One manufacturing technology that inherently takes up this approach is Moulded Interconnect Devices (MID) technology. MIDs are three-dimensional plastic parts which are selectively metallised. The electronic/electromagnetic functionalisation of mechanical components, such as housing parts, is thus possible. The manufacturing and material parameters of the different MID manufacturing processes are often characterised regarding the mechanical or electrical requirements, although e.g. the MID LDS (Laser Direct Structuring) process has been used for years for the production of antennas in consumer devices. Therefore, the main aim of the present work is to carry out a structured technological analysis of the LDS process for high-frequency applications up to 70 GHz and to verify the results by means of antenna developments, which use the three-dimensional design scope provided by the technology. After a description of the manufacturing process of the LDS process, the relevant parameters with regard to radio frequency systems are derived. Based thereon, a detailed discussion of the mechanical parameters, the dielectric material parameters of the LDS plastics as well as the applied metallisation is carried out. The results are verified by measurements. These findings are subsequently used in the development of various antenna concepts which can be fabricated using the LDS process. First of all, two antenna systems are developed to be integrated into a vehicle. The first system takes up a current installation space, a roof antenna module, while a second system is aimed at a new installation space. The developed antennas are realised with the LDS method and subsequently characterised. In addition, two antenna concepts are examined which are independent of a specific installation space, but which take into account the possibility of adapting them to the installation space as an optimisation goal. One concept covers the use of 3D manufacturing in connection with microstrip antennas. A prototype of an active patch antenna for Global Positioning Satellite System (GPS) which combines circuit and antenna on a three-dimensional substrate is realised. The second approach includes antennas which are fed by dielectric filled waveguides. Two prototypes in the 24 GHz and 61 GHz ISM band verify the suitability of the manufacturing technology for frequencies in the millimetre wavelength range. Finally, the antenna concept is investigated on the basis of electromagnetic field simulations in a generic installation space

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives
    • …
    corecore