8,577 research outputs found

    Extension of information geometry for modelling non-statistical systems

    Full text link
    In this dissertation, an abstract formalism extending information geometry is introduced. This framework encompasses a broad range of modelling problems, including possible applications in machine learning and in the information theoretical foundations of quantum theory. Its purely geometrical foundations make no use of probability theory and very little assumptions about the data or the models are made. Starting only from a divergence function, a Riemannian geometrical structure consisting of a metric tensor and an affine connection is constructed and its properties are investigated. Also the relation to information geometry and in particular the geometry of exponential families of probability distributions is elucidated. It turns out this geometrical framework offers a straightforward way to determine whether or not a parametrised family of distributions can be written in exponential form. Apart from the main theoretical chapter, the dissertation also contains a chapter of examples illustrating the application of the formalism and its geometric properties, a brief introduction to differential geometry and a historical overview of the development of information geometry.Comment: PhD thesis, University of Antwerp, Advisors: Prof. dr. Jan Naudts and Prof. dr. Jacques Tempere, December 2014, 108 page

    On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes

    Full text link
    Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.Comment: 39 pages, LaTeX2e, amsar

    A simplex-like search method for bi-objective optimization

    Get PDF
    We describe a new algorithm for bi-objective optimization, similar to the Nelder Mead simplex algorithm, widely used for single objective optimization. For diferentiable bi-objective functions on a continuous search space, internal Pareto optima occur where the two gradient vectors point in opposite directions. So such optima may be located by minimizing the cosine of the angle between these vectors. This requires a complex rather than a simplex, so we term the technique the \cosine seeking complex". An extra beneft of this approach is that a successful search identifes the direction of the effcient curve of Pareto points, expediting further searches. Results are presented for some standard test functions. The method presented is quite complicated and space considerations here preclude complete details. We hope to publish a fuller description in another place
    • …
    corecore