10,729 research outputs found

    An End-to-End Network for Co-Saliency Detection in One Single Image

    Full text link
    As a common visual problem, co-saliency detection within a single image does not attract enough attention and yet has not been well addressed. Existing methods often follow a bottom-up strategy to infer co-saliency in an image, where salient regions are firstly detected using visual primitives such as color and shape, and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived in a complex manner with bottom-up and top-down strategies combined in human vision. To deal with this problem, a novel end-to-end trainable network is proposed in this paper, which includes a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, while the two branch nets construct triplet proposals for feature organization and clustering, which drives the network to be sensitive to co-salient regions in a bottom-up way. To evaluate the proposed method, we construct a new dataset of 2,019 nature images with co-saliency in each image. Experimental results show that the proposed method achieves a state-of-the-art accuracy with a running speed of 28fps

    Backtracking Spatial Pyramid Pooling (SPP)-based Image Classifier for Weakly Supervised Top-down Salient Object Detection

    Full text link
    Top-down saliency models produce a probability map that peaks at target locations specified by a task/goal such as object detection. They are usually trained in a fully supervised setting involving pixel-level annotations of objects. We propose a weakly supervised top-down saliency framework using only binary labels that indicate the presence/absence of an object in an image. First, the probabilistic contribution of each image region to the confidence of a CNN-based image classifier is computed through a backtracking strategy to produce top-down saliency. From a set of saliency maps of an image produced by fast bottom-up saliency approaches, we select the best saliency map suitable for the top-down task. The selected bottom-up saliency map is combined with the top-down saliency map. Features having high combined saliency are used to train a linear SVM classifier to estimate feature saliency. This is integrated with combined saliency and further refined through a multi-scale superpixel-averaging of saliency map. We evaluate the performance of the proposed weakly supervised topdown saliency and achieve comparable performance with fully supervised approaches. Experiments are carried out on seven challenging datasets and quantitative results are compared with 40 closely related approaches across 4 different applications.Comment: 14 pages, 7 figure
    • …
    corecore