80 research outputs found

    A review on the virtual power plant: Components and operation systems

    Full text link
    © 2016 IEEE. Due to the high penetration of Distributed Generations (DGs) in the network and the presently involving competition in all electrical energy markets, Virtual Power Plant (VPP) as a new concept has come into view, with the intention of dealing with the increasing number of DGs in the system and handling effectively the competition in the electricity markets. This paper reviews the VPP in terms of components and operation systems. VPP fundamentally is composed of a number of DGs including conventional dispatchable power plants and intermittent generating units along with possible flexible loads and storage units. In this paper, these components are described in an all-inclusive manner, and some of the most important ones are pointed out. In addition, the most important anticipated outcomes of the two types of VPP, Commercial VPP (CVPP) and Technical VPP (TVPP), are presented in detail. Furthermore, the important literature associated with Combined Heat and Power (CHP) based VPP, VPP components and modeling, VPP with Demand Response (DR), VPP bidding strategy, and participation of VPP in electricity markets are briefly classified and discussed in this paper

    The Value of Distributed Energy Resources (DER) to the Grid: Introductionto the concepts of Marginal Capital Cost and Locational Marginal Value

    Get PDF
    Distributed Energy Resources (DERs) are argued to be a significant benefit to the electric utility grid. While DERs generate significant benefits to their owners and as well as society, the compensation and operating structure of the distribution system of most utilities is such that DERs result in minimal benefits to the distribution system. As we show, the benefits correctly attributed to the distribution company (the wires company) are a function of what service (real, reactive power) the DER is able to provide, when and where, and at what level of certainty the DER is able to provide the service. We introduce the concepts of Marginal Cost of Capacity (MCC) and Locational Marginal Value (LMV) in the calculation of the value of DERs to the distribution system

    TDNetGen: An open-source, parametrizable, large-scale, transmission and distribution test system

    Get PDF
    In this paper, an open-source MATLAB toolbox is presented that is able to generate synthetic, combined transmission and distribution network models. These can be used to analyse the interactions between transmission and multiple distribution systems, such as the provision of ancillary services by active distribution grids, the co-optimization of planning and operation, the development of emergency control and protection schemes spanning over different voltage levels, the analysis of combined market aspects, etc. The generated test-system models are highly customizable, providing the user with the flexibility to easily choose the desired characteristics, such as the level of renewable energy penetration, the size of the final system, etc

    Virtual power plant models and electricity markets - A review

    Get PDF
    In recent years, the integration of distributed generation in power systems has been accompanied by new facility operations strategies. Thus, it has become increasingly important to enhance management capabilities regarding the aggregation of distributed electricity production and demand through different types of virtual power plants (VPPs). It is also important to exploit their ability to participate in electricity markets to maximize operating profits. This review article focuses on the classification and in-depth analysis of recent studies that propose VPP models including interactions with different types of energy markets. This classification is formulated according to the most important aspects to be considered for these VPPs. These include the formulation of the model, techniques for solving mathematical problems, participation in different types of markets, and the applicability of the proposed models to real case studies. From the analysis of the studies, it is concluded that the most recent models tend to be more complete and realistic in addition to featuring greater diversity in the types of electricity markets in which VPPs participate. The aim of this review is to identify the most profitable VPP scheme to be applied in each regulatory environment. It also highlights the challenges remaining in this field of study

    A Distributed Computing Architecture for the Large-Scale Integration of Renewable Energy and Distributed Resources in Smart Grids

    Get PDF
    We present a distributed computing architecture for smart grid management, composed of two applications at two different levels of the grid. At the high voltage level, we optimize operations using a stochastic unit commitment (SUC) model with hybrid time resolution. The SUC problem is solved with an asynchronous distributed subgradient method, for which we propose stepsize scaling and fast initialization techniques. The asynchronous algorithm is implemented in a high-performance computing cluster and benchmarked against a deterministic unit commitment model with exogenous reserve targets in an industrial scale test case of the Central Western European system (679 buses, 1037 lines, and 656 generators). At the distribution network level, we manage demand response from small clients through distributed stochastic control, which enables harnessing residential demand response while respecting the desire of consumers for control, privacy, and simplicity. The distributed stochastic control scheme is successfully tested on a test case with 10,000 controllable devices. Both applications demonstrate the potential for efficiently managing flexible resources in smart grids and for systematically coping with the uncertainty and variability introduced by renewable energy
    corecore