49 research outputs found

    Ultra-Wideband RF Transceive

    Get PDF

    Impacto dos canais não lineares em sistemas UWB

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesEsta dissertação tem como principal objectivo o estudo da tecnologia Ultra Wideband (UWB). Serão também apresentadas propostas para arquitecturas de transmissores e receptores, baseados na comunicação por pulsos e verificação do impacto, que canais de transmissão nãolineares provocam nas arquitecturas propostas.The main purpose of this MSc thesis is the study of the Ultra Wideband (UWB) technology. Will be also proposed transceiver architectures, based on pulsed communications. The impact of non-linear channels in the quality of communication will be verified

    A 3.1-4.8GHz IR-UWB All-Digital Pulse Generator in 0.13-um CMOS Technology for WBAN Systems

    Get PDF
    Analog, Digital & RF Circuit DesignImpulse Radio Ultra-WideBand (IR-UWB) systems have drawn growing attention for wireless sensor networks such as Wireless Personal Area Network (WPAN) and Wireless Body Area Network (WBAN) systems ever since the Federal Communications Commission (FCC) released the spectrum between 3.1 and 10.6GHz for unlicensed use in 2002. The restriction on transmitted power spectral density in this band is equal to the noise emission limit of household digital electronics. This band is also shared with several existing service, therefore in-band interference is expected and presents a challenge to UWB system design. UWB devices as secondary spectrum users must also detect and avoid (DAA) other licensed users from the cognitive radio???s point of view. For the DAA requirement, it is more effective to deploy signal with variable center frequency and a minimum 10dB bandwidth of 500MHz than a signal covering the entire UWB spectrum range with fixed center frequency. A key requirement of the applications using IR-UWB signal is ultra-low power consumption for longer battery life. Also, cost reduction is highly desirable. Recently, digital IR-UWB pulse generation is studied more than analog approach due to its lower power consumption. An all-digital pulse generator in a standard 0.13-um CMOS technology for communication systems using Impulse Radio Ultra-WideBand (IR-UWB) signal is presented. A delay line-based architecture utilizing only static logic gates and leading lower power consumption for pulse generation is proposed in this thesis. By using of all-digital architecture, energy is consumed by CV2 switching losses and sub-threshold leakage currents, without RF oscillator or analog bias currents. The center frequency and the fixed bandwidth of 500MHz of the output signal can be digitally controlled to cover three channels in low band of UWB spectrum. Delay based Binary Shift Keying (DB-BPSK) and Pulse Position Modulation (PPM) schemes are exploited at the same time to modulate the transmitted signals with further improvement in spectrum characteristics. The total energy consumption is 48pJ/pulse at 1.2V supply voltage, which is well suitable for WBAN systems.ope

    Analysis and design of low power CMOS ultra wideband receiver

    Full text link
    This research concentrates on the design and analysis of low power ultra wideband receivers for Multiband Orthogonal Frequency Division Multiplexing systems. Low power design entails different performance tradeoffs, which are analyzed. Relationship among power consumption, achievable noise figure and linearity performance including distortion products (cross-modulation, inter-modulation and harmonic distortion) are derived. From these relationships, circuit design proceeds with allocation of gain among different sub circuit blocks for power optimum system. A power optimum RF receiver front-end for MB-OFDM based UWB systems is designed that covers all the MB-OFDM spectrum between 3.1 GHZ to 9.6 GHZ. The receiver consists of a low-noise amplifier, down-converter, channel select filter and programmable gain amplifier and occupies only 1mm 2 in 0.13um CMOS process. Receiver consumes 20 mA from a 1.2 V supply and has the measured gain of 69db, noise figure less than 6 dB and input IIP 3 of -6 dBm

    Study and design of an impulse radio UWB synthesizer for 3.1-10.6 GHz band in 28 NM CMOS FD-SOI technology

    Get PDF
    Orientador: Prof. Ph.D. André Augusto MarianoCoorientador: Prof. Ph.D. Rémy VaucheDissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica. Defesa : Curitiba, 21/03/2022Inclui referências: p. 107-110Resumo: Este trabalho de dissertação de mestrado apresenta o estudo e desenvolvimento de sintetizador de pulsos de radio ultra banda larga para a banda 3,1-10,6 GHz em tecnologia 28 nm CMOS FD-SOI. A primeira utilização dessa banda de frequência foi autorizada pela comissão federal de comunicações dos Estados Unidos em 2002. Visando a explorar essa banda de frequência, o padrão IEEE 802.15.4 escolheu as comunicações baseadas em pulsos de radio em detrimento das comunicações tradicionais de banda estreita. Uma linha importante de pesquisa e o estudo e desenvolvimento de um transmissor ultra banda larga, capaz de endereçar múltiplas bandas e múltiplos padrões diferentes, que e consistido em um sintetizador de pulsos de radio devendo ter a capacidade de cobrir a banda 3,1-10,6 GHz. Para atingir tal objetivo, visa-se a implementação de uma arquitetura versátil baseada em um gerador de pulsos constituído principalmente por um oscilador controlado por tensão, e um circuito de formatação da envoltória do pulso, em que e possível fazer ajuste da duração e da frequência central dos pulsos, e compensar variações PVT (Processo, Tensão e Temperatura). O objetivo principal deste trabalho de dissertação de mestrado e estudo e desenvolvimento de um sintetizador de pulsos baseado nessa arquitetura em tecnologia 28 nm CMOS FD-SOI, de maneira que esse circuito seja capaz de cobrir toda banda 3.1-10.6 GHz e ao mesmo tempo cumprir os requerimentos espectrais estabelecidos pelos padrões IEEE 802.15.4 e IEEE 802.15.6. No projeto do circuito proposto, utilizou-se a técnica de síntese de pulso por transposição de frequência, constituído principalmente por um oscilador local comutado, permitindo a redução do consumo de energia, em que o sinal produzido pelo oscilador e modulado por um pulso em banda base. Em relação a metodologia do projeto, trata-se de um projeto totalmente personalizado, em que se utilizou as logicas CMOS e CML (Logica Diferencial), e se considerou capacitâncias parasitas estimadas no intuito de melhorar o dimensionamento dos transistores. A arquitetura do oscilador escolhida neste projeto foi o oscilador em anel, a qual permite de se obter uma banda de frequência suficientemente alta. Acerca da formatação do pulso, escolheu-se uma envoltória possível de se implementar com circuito digital reprogramável, visando a endereçar os diferentes canais do padrão IEEE 802.15.4 e IEEE 802.15.6. O sistema implementado, em nível de esquemático de transistor considerando capacitâncias parasitas estimadas, apresenta um desempenho satisfatório sobre a toda a banda de frequência de interesse, em que os pulsos gerados respeitam os gabaritos espectrais impostos pelos padrões IEEE, evidenciando a capacidade do circuito prosposto de ser multi-banda e cobrir toda a banda de frequência de interesse. Em relação ao consumo de potência, esse e influenciado pela duração do pulso e sua frequência central. Ademais, obteve-se um consumo de potencia estática 14 µW e um consumo de energia por pulso emitido máximo de 308 pJ, em que para esse caso, o pulso apresenta um energia transmitida de 11,7 pJ por pulso, assim apresentando uma eficiência de 3,8 %.Abstract: This dissertation work concerns the study and design of an impulse radio ultra-wide band synthesizer for 3.1-10.6 GHz frequency band in 28 nm CMOS FD-SOI technology. Indeed, this frequency band exploitation was initially authorized by the federal communications commission of United States in 2002. Targeting to exploit this frequency band, the IEEE 802.15.4 standard has chosen the communications based on impulse radio instead of the traditional narrowband communications. Besides, the impulse radio communications should respect communications standards, like the IEEE 802.15.4 for wireless personal networks, or IEEE 802.15.6 for wireless body networks. These IEEE standards define the generated pulse bandwidth and its central frequency. An important line of research is the study and design of a multi-standard or multi-band UWB transmitter, consisted by a pulse synthesizer that should be able to address all the standardized channels. To accomplish this, a proposed solution reposes on design of versatile architecture based on pulse generator and an envelope shaping circuit, where it is possible to tune the pulse duration and central frequency, and also to compensate PVT variations (Process, Voltage and Temperature). The dissertation work main goal is the study and design of a pulse synthesizer based on this architecture in 28 nm CMOS FD-SOI technology, such that the designed system is capable to cover all the 3.1-10.6 GHz and at same time to comply the spectral requirements established by IEEE 802.15.4 and 802.15.6 standards. In relation of the proposed circuit design, it is applied the pulse synthesis technique based on frequency transposition, that is mainly composed by a local oscillator that can be turned on and off, which allows to reduce the power consumption. The generated oscillation is modulated by a baseband pulse. Concerning the design methodology, it is a full-custom project, where CMOS and CML logics were used, and estimated parasitic capacitances were considered to achieve more reliable transistor sizing. The oscillator architecture chosen is based on ring oscillator, which allows to reach a frequency range sufficiently large. For the pulse shaping, it was chosen a envelope that is feasible to implement with fully digital circuit, targeting to address all IEEE 802.15.4 and IEEE 802.15.6 standard channels. The implemented system presents, in schematic levels considering parasitic capacitances, a satisfactory performance over all the 3.1-10.6 GHz band, where the generated pulses respect the spectral requirements imposed by the IEEE standards, therefore indicating that the proposed circuit is multi-band and able to cover all frequency band of interest. In terms of power consumption, it was achieved a power leakage of 14 µW and a maximal energy per pulse consumption of 308 pJ, where for this case, the pulse has an emitted energy of 11.7 pJ per pulse, therefore a efficiency of 3.8 %

    Étude et conception d'une couche physique UWB-IR pour les réseaux BAN

    Get PDF
    Les réseaux à l'origine métropolitains, ont connu une tendance à rétrécir pour aujourd'hui se concentrer autour de l'être humain. Avec des équipements de plus en plus miniatures et les utilisateurs désireux de disposer en permanence des services qui leur sont accessibles à domicile, le réseau est envisagé plus petit, plus proche du corps. On assiste alors à l'émergence du réseau corporel, le Body Area Network (BAN), qui est constitué d'éléments situés sur le corps, à l'intérieur ou encore à une courte distance. Ce réseau à portée du corps génère de nouvelles problématiques, notamment celles de la puissance rayonnée par les équipements, leur taille, leur poids...Les applications et usages envisagés pour un tel réseau sont variés et couvrent plusieurs domaines d'activités, en l'occurrence le secteur du médical, du sport, et le multimédia. Ce réseau doit donc reposer sur une couche physique qui s'adapte aux contraintes de ces diverses applications, tout en favorisant des équipements de faible taille, faible complexité et de forte autonomie. La technologie Ultra Large Bande impulsionnelle (UWB-IR) est porteuse de nombreuses promesses pour satisfaire en partie les besoins des réseaux BAN, car autorisant des débits aussi bien réduits qu'élevés, et les architectures d'émission et réception utilisables pour cette technologie rendent possibles des équipements à faible complexité et faible coût, et dont la consommation énergétique est réduite.Ce travail de thèse a débuté alors qu'un processus de normalisation sur les BAN était en cours. L'objectif des travaux menés était de pouvoir contribuer en partie à ce processus de normalisation par la proposition d'une couche physique basée sur la radio impulsionnelle UWB (UWB-IR). Ainsi notre étude a porté sur le paramétrage de cette couche physique à partir de l'analyse des contraintes et requis techniques d'un réseau BAN. Les performances de cette couche physique ont ensuite été évaluées dans un contexte de canal UWB BAN et suivant le type d'architecture en réception, en particulier pour le récepteur non-cohérent. Enfin, une attention a été apportée sur la robustesse de la liaison en présence d'interférences bande étroite. Dans l'ensemble, ce travail a permis d'étudier et d'évaluer la pertinence d'une couche physique UWB-IR dans le contexte du réseau BANAbsence de résumé en anglaisPARIS-EST-Université (770839901) / SudocSudocFranceF
    corecore