53,103 research outputs found

    Model reduction of network systems with structure preservation:Graph clustering and balanced truncation

    Get PDF
    A framework of complex networks can adequately describe a wide class of complex systems composing of many interacting subsystems. A large number of subsystems and their high-dimensional dynamics often result in the high complexity of a network system, which poses intense challenges to system management and operation. The main motivation of this research is to establish suitable model reduction techniques that generate simplified models to capture the essential features of the complex network systems. Two approaches are developed in this thesis to reduce the complexity of a network system with structure preservation. The first one is based on graph clustering, which aims to partition a network into several nonoverlapping clusters and merges all the vertices in each cluster into a single vertex. A reduced-order model is then formulated via the framework of the Petrov-Galerkin projection. This thesis discusses the applications of the clustering-based model reduction methods for second-order networks, controlled power networks, multi-agent systems and directed networks in Part I. The second approach in Part II extends the balanced truncation method for control systems to the simplification of dynamical networks. For networked linear passive systems, the proposed method reduces interconnection structures of a network and the dynamics of each subsystem via a unified framework. Additionally, an approach is developed for the reduction of nonlinear Lur’e networks, showing that the dimension of each nonlinear subsystem can be reduced while preserving the robust synchronization property of the overall network

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Reduction of Second-Order Network Systems with Structure Preservation

    Get PDF
    This paper proposes a general framework for structure-preserving model reduction of a secondorder network system based on graph clustering. In this approach, vertex dynamics are captured by the transfer functions from inputs to individual states, and the dissimilarities of vertices are quantified by the H2-norms of the transfer function discrepancies. A greedy hierarchical clustering algorithm is proposed to place those vertices with similar dynamics into same clusters. Then, the reduced-order model is generated by the Petrov-Galerkin method, where the projection is formed by the characteristic matrix of the resulting network clustering. It is shown that the simplified system preserves an interconnection structure, i.e., it can be again interpreted as a second-order system evolving over a reduced graph. Furthermore, this paper generalizes the definition of network controllability Gramian to second-order network systems. Based on it, we develop an efficient method to compute H2-norms and derive the approximation error between the full-order and reduced-order models. Finally, the approach is illustrated by the example of a small-world network

    Cluster-based feedback control of turbulent post-stall separated flows

    Full text link
    We propose a novel model-free self-learning cluster-based control strategy for general nonlinear feedback flow control technique, benchmarked for high-fidelity simulations of post-stall separated flows over an airfoil. The present approach partitions the flow trajectories (force measurements) into clusters, which correspond to characteristic coarse-grained phases in a low-dimensional feature space. A feedback control law is then sought for each cluster state through iterative evaluation and downhill simplex search to minimize power consumption in flight. Unsupervised clustering of the flow trajectories for in-situ learning and optimization of coarse-grained control laws are implemented in an automated manner as key enablers. Re-routing the flow trajectories, the optimized control laws shift the cluster populations to the aerodynamically favorable states. Utilizing limited number of sensor measurements for both clustering and optimization, these feedback laws were determined in only O(10)O(10) iterations. The objective of the present work is not necessarily to suppress flow separation but to minimize the desired cost function to achieve enhanced aerodynamic performance. The present control approach is applied to the control of two and three-dimensional separated flows over a NACA 0012 airfoil with large-eddy simulations at an angle of attack of 99^\circ, Reynolds number Re=23,000Re = 23,000 and free-stream Mach number M=0.3M_\infty = 0.3. The optimized control laws effectively minimize the flight power consumption enabling the flows to reach a low-drag state. The present work aims to address the challenges associated with adaptive feedback control design for turbulent separated flows at moderate Reynolds number.Comment: 32 pages, 18 figure

    Structure-preserving model reduction of physical network systems by clustering

    Full text link
    In this paper, we establish a method for model order reduction of a certain class of physical network systems. The proposed method is based on clustering of the vertices of the underlying graph, and yields a reduced order model within the same class. To capture the physical properties of the network, we allow for weights associated to both the edges as well as the vertices of the graph. We extend the notion of almost equitable partitions to this class of graphs. Consequently, an explicit model reduction error expression in the sense of H2-norm is provided for clustering arising from almost equitable partitions. Finally the method is extended to second-order systems
    corecore