60,884 research outputs found

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    An evolutionary game theoretic approach for stable clustering in vehicular ad hoc networks (VANETs)

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Finding and maintaining efficient routes for data dissemination in VANETs is a very challenging problem due to the highly dynamic characteristics of VANETs. Clustering in Vehicular Ad hoc Networks (VANETs) is one of the control schemes used to provide efficient and stable routes for data dissemination in VANETs. The rapid changes in the topology of VANETs have instigated frequent cluster formation and reorganization which has seriously affected route stability in Vehicular Ad hoc Networks. Considerable work has been reported into the development of clustering protocols while keeping in view the highly dynamic topology of VANETs, but the objective of imbuing the system with a stable underlay is still in the infant stage. The analytical models used for studying the behaviour of Vehicular Ad hoc Networks have been scarced due to distributed, highly dynamic and self-organizing characteristics of VANETs. In contrast, game theory is emerging as a novel analytical tool that can be used to tackle the technical challenges concerning the current and future problems in wireless and communication networks. A two-layer novel Evolutionary Game Theoretic (EGT) framework is presented to solve the problem of in-stable clustering in VANETs. The aim of this research is to model the interactions of vehicular nodes in VANETs, to retain a stable clustering state of the network with evolutionary equilibrium as the solution of this game. A stable clustering scenario in VANETs is modelled with a reinforcement learning approach to reach the solution of an evolutionary equilibrium. Performance of the proposed “evolutionary game based clustering algorithm” is empirically investigated in different cases and the simulation results show that the system retains cluster stability

    An Efficient Data Transmission in VANET using Clustering Method

    Get PDF
    A special type of Mobile Ad-hoc Networks (MANETs) which has frequent changes of topology and higher mobility is known as Vehicular Ad-hoc Networks (VANETs). In order to divide the network into groups of mobile vehicles and improve routing, data gathering, clustering is applied in VANETs. A stable clustering scheme based on adaptive multiple metric combining both the features of static and dynamic clustering methods is proposed in this work. Based on a new multiple metric method, a cluster head is selected among the cluster members which is taken from the mobility metrics such as position and time to leave the road segment, relative speed and Quality of Service metrics which includes neighborhood degree, link quality of the RSU and bandwidth. A higher QoS and cluster stability are achieved through the adaptive multiple metric. The results are simulated using NS2 and shows that this technique provides more stable cluster structured with the other method

    Multicast outing protocols and architectures in mobile ad-hoc wireless networks

    Get PDF
    The basic philosophy of personal communication services is to provide user-to-user, location independent communication services. The emerging group communication wireless applications, such as multipoint data dissemination and multiparty conferencing tools have made the design and development of efficient multicast techniques in mobile ad-hoc networking environments a necessity and not just a desire. Multicast protocols in mobile adhoc networks have been an area of active research for the past few years. In this dissertation, protocols and architectures for supporting multicast services are proposed, analyzed and evaluated in mobile ad-hoc wireless networks. In the first chapter, the activities and recent advances are summarized in this work-in-progress area by identifying the main issues and challenges that multicast protocols are facing in mobile ad-hoc networking environments and by surveying several existing multicasting protocols. a classification of the current multicast protocols is presented, the functionality of the individual existing protocols is discussed, and a qualitative comparison of their characteristics is provided according to several distinct features and performance parameters. In the second chapter, a novel mobility-based clustering strategy that facilitates the support of multicast routing and mobility management is presented in mobile ad-hoc networks. In the proposed structure, mobile nodes are organized into nonoverlapping clusters which have adaptive variable-sizes according to their respective mobility. The mobility-based clustering (MBC) approach which is proposed uses combination of both physical and logical partitions of the network (i.e. geographic proximity and functional relation between nodes, such as mobility pattern etc.). In the third chapter, an entropy-based modeling framework for supporting and evaluating the stability is proposed in mobile ad-hoc wireless networks. The basic motivations of the proposed modeling approach stem from the commonality observed in the location uncertainty in mobile ad-hoc wireless networks and the concept of entropy. In the fourth chapter, a Mobility-based Hybrid Multicast Routing (MHMR) protocol suitable for mobile ad-hoc networks is proposed. The MHMR uses the MBC algorithm as the underlying structure. The main features that the proposed protocol introduces are the following: a) mobility based clustering and group based hierarchical structure, in order to effectively support the stability and scalability, b) group based (limited) mesh structure and forwarding tree concepts, in order to support the robustness of the mesh topologies which provides limited redundancy and the efficiency of tree forwarding simultaneously, and c) combination of proactive and reactive concepts which provide the low route acquisition delay of proactive techniques and the low overhead of reactive methods. In the fifth chapter, an architecture for supporting geomulticast services with high message delivery accuracy is presented in mobile ad-hoc wireless networks. Geomulticast is a specialized location-dependent multicasting technique, where messages are multicast to some specific user groups within a specific zone. An analytical framework which is used to evaluate the various geomulticast architectures and protocols is also developed and presented. The last chapter concludes the dissertation

    STABLE CLUSTERING ON AODV WITH SLEEP MODE

    Get PDF
    Clustering has evolved as an imperative research domain that enhances system performance such as throughput and delay in Mobile Ad hoc Networks (MANETs) in the presence of both mobility and a large number of mobile terminals. In this thesis, we present a clustering scheme that minimizes message overhead and congestion for cluster formation and maintenance. The algorithm is devised to be dependent on Ad-hoc On Demand Distance Vector (AODV) Routing with sleep mode algorithm of MANET. The dynamic formation of clusters helps reduce data packet overhead, node complexity and power consumption. The goal of this algorithm is to decrease the number of cluster forming, maintain stable clustering structure and maximize lifespan of mobile nodes in the system. Nodes in MANET networks are basically battery operated, and thus have access to a limited amount of energy. This process proposes an Energy based Ad-Hoc on-Demand Routing algorithm that balances energy among nodes so that a minimum energy level is maintained among nodes and the lifetime of network is increased. The simulation has been performed in ns-2. The simulation shows that the number of clusters formed is in proportion with the number of nodes in MANET

    Data-Gathering and Aggregation Protocol for Networked Carrier Ad Hoc Networks: The Optimal and Heuristic Approach

    Get PDF
    In this chapter, we address the problem of data-gathering and aggregation (DGA) in navigation carrier ad hoc networks (NC-NET), in order to reduce energy consumption and enhance network scalability and lifetime. Several clustering algorithms have been presented for vehicle ad hoc network (VANET) and other mobile ad hoc network (MANET). However, DGA approach in harsh environments, in terms of long-range transmission, high dynamic topology and three-dimensional monitor region, is still an open issue. In this chapter, we propose a novel clustering-based DGA approach, namely, distributed multiple-weight data-gathering and aggregation (DMDG) protocol, to guarantee quality of service (QoS)-aware DGA for heterogeneous services in above harsh environments. Our approach is explored by the synthesis of three kernel features. First, the network model is addressed according to specific conditions of networked carrier ad hoc networks (NC-NET), and several performance indicators are selected. Second, a distributed multiple-weight data-gathering and aggregation protocol (DMDG) is proposed, which contains all-sided active clustering scheme and realizes long-range real-time communication by tactical data link under a time-division multiple access/carrier sense multiple access (TDMA/CSMA) channel sharing mechanism. Third, an analytical paradigm facilitating the most appropriate choice of the next relay is proposed. Experimental results have shown that DMDG scheme can balance the energy consumption and extend the network lifetime notably and outperform LEACH, PEACH and DEEC in terms of network lifetime and coverage rate, especially in sparse node density or anisotropic topologies

    An Empirical Analysis of cluster-based routing protocols in wireless sensor network

    Get PDF
    Wireless Sensor Networks (WSNs) are utilized for condition monitoring, developing the board, following animals or goods, social protection, transportation, and house frameworks. WSNs are revolutionizing research. A WSN includes a large number of sensor nodes, or bits, in the application. Bits outfitted with the application\u27s sensors acquire nature data and send it to at least one sink center (in like manner called base stations). This article simulates energy-efficient network initialization strategies using simulation models. First, an overview of network initiation and exploration procedures in wireless ad-hoc networks is provided. The clustering-based routing strategy was selected since it\u27s best for ad-hoc sensor networks. The clustering-based routing techniques used for this study are described below. LEACH, SEP, and Z-SEP are used. MATLAB was used to implement and simulate all routing protocols. All protocols were simulated with various parameters like Number of CHs, Number of Alive Nodes, Number of Dead Nodes, Number of packets to BS, and circumstances to show their functioning and to determine their behavior in different sensor networks

    Enhanced Cluster Based Routing Protocol for MANETS

    Full text link
    Mobile ad-hoc networks (MANETs) are a set of self organized wireless mobile nodes that works without any predefined infrastructure. For routing data in MANETs, the routing protocols relay on mobile wireless nodes. In general, any routing protocol performance suffers i) with resource constraints and ii) due to the mobility of the nodes. Due to existing routing challenges in MANETs clustering based protocols suffers frequently with cluster head failure problem, which degrades the cluster stability. This paper proposes, Enhanced CBRP, a schema to improve the cluster stability and in-turn improves the performance of traditional cluster based routing protocol (CBRP), by electing better cluster head using weighted clustering algorithm and considering some crucial routing challenges. Moreover, proposed protocol suggests a secondary cluster head for each cluster, to increase the stability of the cluster and implicitly the network infrastructure in case of sudden failure of cluster head.Comment: 6 page

    Ad-hoc wireless networking for supporting on-site communication

    Get PDF
    Ad-hoc networks are self-organized wireless networks. They have the potential to be widely used in emergency salvation, construction sites, and military fields. However, the research about the efficient usage of ad-hoc networking in engineering applications is still limited. In this research, a new approach for investigating problems related to deploying ad-hoc wireless networks for supporting on-site communication and collaboration is proposed. Several modes of communication which are common in on-site applications are considered including location information, text messaging, voice and video communications, and file transmission. A prototype system is implemented for testing these modes based on available ad-hoc network protocols and using mobile devices. In addition, in order to verify our proposed approach, several tests are designed and implemented to demonstrate the usefulness of the prototype system. The results from the tests showed that our prototype system is applicable for ad-hoc wireless networks. Furthermore, a new protocol based on clustering to improve data accessibility in ad-hoc networks is tested using a simulation tool to study its performance under different scenarios. The simulation results showed the impact of the area size, wireless range, number of nodes, and node speed on data accessibility
    corecore