47,775 research outputs found

    Clustering heterogeneous categorical data using enhanced mini batch K-means with entropy distance measure

    Get PDF
    Clustering methods in data mining aim to group a set of patterns based on their similarity. In a data survey, heterogeneous information is established with various types of data scales like nominal, ordinal, binary, and Likert scales. A lack of treatment of heterogeneous data and information leads to loss of information and scanty decision-making. Although many similarity measures have been established, solutions for heterogeneous data in clustering are still lacking. The recent entropy distance measure seems to provide good results for the heterogeneous categorical data. However, it requires many experiments and evaluations. This article presents a proposed framework for heterogeneous categorical data solution using a mini batch k-means with entropy measure (MBKEM) which is to investigate the effectiveness of similarity measure in clustering method using heterogeneous categorical data. Secondary data from a public survey was used. The findings demonstrate the proposed framework has improved the clustering’s quality. MBKEM outperformed other clustering algorithms with the accuracy at 0.88, v-measure (VM) at 0.82, adjusted rand index (ARI) at 0.87, and Fowlkes-Mallow’s index (FMI) at 0.94. It is observed that the average minimum elapsed time-varying for cluster generation, k at 0.26 s. In the future, the proposed solution would be beneficial for improving the quality of clustering for heterogeneous categorical data problems in many domains

    A Survey on Soft Subspace Clustering

    Full text link
    Subspace clustering (SC) is a promising clustering technology to identify clusters based on their associations with subspaces in high dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been extensively studied and well accepted by the scientific community, SSC algorithms are relatively new but gaining more attention in recent years due to better adaptability. In the paper, a comprehensive survey on existing SSC algorithms and the recent development are presented. The SSC algorithms are classified systematically into three main categories, namely, conventional SSC (CSSC), independent SSC (ISSC) and extended SSC (XSSC). The characteristics of these algorithms are highlighted and the potential future development of SSC is also discussed.Comment: This paper has been published in Information Sciences Journal in 201

    Cross-Entropy Clustering

    Full text link
    We construct a cross-entropy clustering (CEC) theory which finds the optimal number of clusters by automatically removing groups which carry no information. Moreover, our theory gives simple and efficient criterion to verify cluster validity. Although CEC can be build on an arbitrary family of densities, in the most important case of Gaussian CEC: {\em -- the division into clusters is affine invariant; -- the clustering will have the tendency to divide the data into ellipsoid-type shapes; -- the approach is computationally efficient as we can apply Hartigan approach.} We study also with particular attention clustering based on the Spherical Gaussian densities and that of Gaussian densities with covariance s \I. In the letter case we show that with ss converging to zero we obtain the classical k-means clustering

    Finding groups in data: Cluster analysis with ants

    Get PDF
    Wepresent in this paper a modification of Lumer and Faieta’s algorithm for data clustering. This approach mimics the clustering behavior observed in real ant colonies. This algorithm discovers automatically clusters in numerical data without prior knowledge of possible number of clusters. In this paper we focus on ant-based clustering algorithms, a particular kind of a swarm intelligent system, and on the effects on the final clustering by using during the classification differentmetrics of dissimilarity: Euclidean, Cosine, and Gower measures. Clustering with swarm-based algorithms is emerging as an alternative to more conventional clustering methods, such as e.g. k-means, etc. Among the many bio-inspired techniques, ant clustering algorithms have received special attention, especially because they still require much investigation to improve performance, stability and other key features that would make such algorithms mature tools for data mining. As a case study, this paper focus on the behavior of clustering procedures in those new approaches. The proposed algorithm and its modifications are evaluated in a number of well-known benchmark datasets. Empirical results clearly show that ant-based clustering algorithms performs well when compared to another techniques
    corecore