5 research outputs found

    Stochastic Approach for Energy-Efficient Clustering in WSN

    Get PDF
    Abstract- Wireless sensor networks are self-organizing networks in which sensor nodes with limited resource are scattered in an area of interest to gather information. WSNs need to have effective node2019;s energy management methods for stable and seamless communication. Power efficient clustering is done in WSN to prolong the life of the network. In WSN, many algorithms are developed to save energy of sensor nodes and to increase the lifetime of the network. This paper provides an energy efficient clustering algorithm inspired by prophet routing protocol to enhance the cluster based operation of the nodes. Adaptive learning is implemented for head selection for efficientcommunication. Simulation results confirm the efficiency of the mechanism

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    Clustering Wireless Sensors Networks with FFUCA

    No full text
    International audienc

    Clustering Wireless Sensors Networks with FFUCA

    No full text
    International audienc
    corecore