15,972 research outputs found

    Integrated Modeling Approach for the Transportation Disadvantaged

    Get PDF
    Transportation models have not been adequate in addressing severe long-term urban transportation problems that transportation disadvantaged groups overwhelmingly encounter, and the negative impacts of transportation on the disadvantaged have not been effectively considered in the modeling studies. Therefore this paper aims to develop a transportation modeling approach in order to understand the travel patterns of the transportation disadvantaged, and help in developing policies to solve the problems of the disadvantaged. Effectiveness of this approach is tested in a pilot study in Aydin, Turkey. After determining disadvantaged groups by a series of spatial and statistical analyses, the approach is integrated with a travel demand model. The model is run for both disadvantaged and nondisadvantaged populations to examine the differences between their travel behaviors. The findings of the pilot study reveal that almost two thirds of the population is disadvantaged, and this modeling approach could be particularly useful in disadvantage-sensitive planning studies to deploy relevant land use and transportation policies for disadvantaged groups

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Evaluating Impacts of Shared E-scooters from the Lens of Sustainable Transportation

    Get PDF
    As the popularity of shared micromobility is increasing worldwide, city governments are struggling to regulate and manage these innovative travel technologies that have several benefits, including increasing accessibility, reducing emissions, and providing affordable travel options. This dissertation evaluates the impacts of shared micromobility from the perspective of sustainable transportation to provide recommendations to decision-makers, planners, and engineers for improving these emerging travel technologies. The dissertation focuses on four core aspects of shared micromobility as follows: 1) Safety: I evaluated police crash reports of motor vehicle involving e-scooter and bicycle crashes using the most recent PBCAT crash typology to provide a comprehensive picture of demographics of riders crashing and crash characteristics, as well as mechanism of crash and crash risk, 2) Economics: I estimated the demand elasticity of e-scooters deployed, segmented by weekday type, land use, category of service providers based on fleet size using negative binomial fixed effect regression model and K-means clustering, 3) Expanding micromobility to emerging economies: Using dynamic stated preference pivoting survey and panel data mixed logit model, I assessed the intentions to adopt shared micromobility in mid-sized cities of developing countries, where these innovative technology could be the first wave of decarbonizing transportation sector, and 4) Micromobility data application: I identified five usage-clusters of shared e-scooter trips using combination of Principal Component Analysis (PCA) and K-means clustering to propose a novel framework for using micromobility data to inform data-driven decision on broader policy goals. Based on the key findings of the research, I provide five recommendations as follows: 1) decision-makers should be proactive in incorporating new travel technologies like shared micromobility, 2) city governments should leverage shared micromobility usage and operation data to empower the decision-making process, 3) each shared micromobility vehicles should be approached uniquely for improving road safety, 4) city governments should consider regulating the number of service providers and their fleet sizes, and 5) decision-makers should prioritize expanding shared micromobility in emerging economies as one of the first efforts to the decarbonizing transportation sector

    Exploring the Potentials of Using Crowdsourced Waze Data in Traffic Management: Characteristics and Reliability

    Get PDF
    Real-time traffic information is essential to a variety of practical applications. To obtain traffic data, various traffic monitoring devices, such as loop detectors, infrastructure-mounted sensors, and cameras, have been installed on road networks. However, transportation agencies have sought alternative data sources to monitor traffic, due to the high installation and maintenance cost of conventional data collecting methods. Recently, crowdsourced traffic data has become available and is widely considered to have great potential in intelligent transportation systems. Waze is a crowdsourcing traffic application that enables users to share real-time traffic information. Waze data, including passively collected speed data and actively reported user reports, is valuable for traffic management but has not been explored or evaluated extensively. This dissertation evaluated and explored the potential of Waze data in traffic management from different perspectives. First, this dissertation evaluated and explored Waze traffic speed to understand the characteristics and reliability of Waze traffic speed data. Second, a calibration-free incident detection algorithm with traffic speed data on freeways was proposed, and the results were compared with other commonly used algorithms. Third, a spatial and temporal quality analysis of Waze accident reports to better understand their quality and accuracy was performed. Last, the dissertation proposed a network-based clustering algorithm to identify secondary crashes with Waze user reports, and a case study was performed to demonstrate the applicability of our method and the potential of crowdsourced Waze user reports
    • …
    corecore