29 research outputs found

    Evolving comprehensible and scalable solvers using CGP for solving some real-world inspired problems

    Get PDF
    My original contribution to knowledge is the application of Cartesian Genetic Programming to design some scalable and human-understandable metaheuristics automatically; those find some suitable solutions for real-world NP-hard and discrete problems. This technique is thought to possess the ability to raise the generality of a problem-solving process, allowing some supervised machine learning tasks and being able to evolve non-deterministic algorithms. \\ Two extensions of Cartesian Genetic Programming are presented. Iterative My original contribution to knowledge is the application of Cartesian Genetic Programming to design some scalable and human-understandable metaheuristics automatically; those find some suitable solutions for real-world NP-hard and discrete problems. This technique is thought to possess the ability to raise the generality of a problem-solving process, allowing some supervised machine learning tasks and being able to evolve non-deterministic algorithms. \\ Two extensions of Cartesian Genetic Programming are presented. Iterative Cartesian Genetic Programming can encode loops and nested loop with their termination criteria, making susceptible to evolutionary modification the whole programming construct. This newly developed extension and its application to metaheuristics are demonstrated to discover effective solvers for NP-hard and discrete problems. This thesis also extends Cartesian Genetic Programming and Iterative Cartesian Genetic Programming to adapt a hyper-heuristic reproductive operator at the same time of exploring the automatic design space. It is demonstrated the exploration of an automated design space can be improved when specific types of active and non-active genes are mutated. \\ A series of rigorous empirical investigations demonstrate that lowering the comprehension barrier of automatically designed algorithms can help communicating and identifying an effective and ineffective pattern of primitives. The complete evolution of loops and nested loops without imposing a hard limit on the number of recursive calls is shown to broaden the automatic design space. Finally, it is argued the capability of a learning objective function to assess the scalable potential of a generated algorithm can be beneficial to a generative hyper-heuristic

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies
    corecore