40 research outputs found

    Case study: IBM Watson Analytics cloud platform as Analytics-as-a-Service system for heart failure early detection

    Get PDF
    In the recent years the progress in technology and the increasing availability of fast connections have produced a migration of functionalities in Information Technologies services, from static servers to distributed technologies. This article describes the main tools available on the market to perform Analytics as a Service (AaaS) using a cloud platform. It is also described a use case of IBM Watson Analytics, a cloud system for data analytics, applied to the following research scope: detecting the presence or absence of Heart Failure disease using nothing more than the electrocardiographic signal, in particular through the analysis of Heart Rate Variability. The obtained results are comparable with those coming from the literature, in terms of accuracy and predictive power. Advantages and drawbacks of cloud versus static approaches are discussed in the last sections

    Classification of ECG signals using Cluster Analysis

    Get PDF
    Bakalářská práce se zabývá metodami shlukové analýzy a jejich aplikací na krátkodobé záznamy elektrokardiogramů (EKG). V práci je popsáno srdce a fyziologické vlastnosti srdeční svaloviny, dále jeho elektrické projevy a vznik a měření EKG. Součástí práce je popis problematiky shlukové analýzy v oblasti biosignálů a rozdělení shlukovacích metod na hierarchické a nehierarchické. Podrobněji jsou popsány aglomerativní hierarchické metody, u kterých je naznačen i postup při řešení. Dále je popsáno využití shlukové analýzy při klasifikaci EKG a jeho aplikace na signály z databáze CSE. Práce hodnotí, která ze shlukovacích metod je pro aplikaci na signály EKG nejvhodnější.This thesis deals with methods of cluster analysis and their applications to short-term recording of the electrocardiogram (ECG). The work describes the physiological properties of the heart and cardiac muscle, as well as its electrical behavior and the formation and ECG. Part of this work is to describe the issue of cluster analysis of biosignals and distribution of clustering methods for hierarchical and non-hierarchical. Are described in detail agglomerative hierarchical method, which is outlined the procedure for the solution. Further described is the use of cluster analysis for classification of ECG and its application to the signals from the CSE. This work assesses which of clustering methods is applied to ECG signals appropriate.

    Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations

    Full text link
    [EN] Despite its widely demonstrated usefulness, there is still room for improvement in the basic Permutation Entropy (PE) algorithm, as several subsequent studies have proposed in the recent years. For example, some improved PE variants try to address possible PE weaknesses, such as its only focus on ordinal information, and not on amplitude, or the possible detrimental impact of equal values in subsequences due to motif ambiguity. Other evolved PE methods try to reduce the influence of input parameters. A good representative of this last point is the Bubble Entropy (BE) method. BE is based on sorting relations instead of ordinal patterns, and its promising capabilities have not been extensively assessed yet. The objective of the present study was to comparatively assess the classification performance of this new method, and study and exploit the possible synergies between PE and BE. The claimed superior performance of BE over PE was first evaluated by conducting a series of time series classification tests over a varied and diverse experimental set. The results of this assessment apparently suggested that there is a complementary relationship between PE and BE, instead of a superior/inferior relationship. A second set of experiments using PE and BE simultaneously as the input features of a clustering algorithm, demonstrated that with a proper algorithm configuration, classification accuracy and robustness can benefit from both measures.Cuesta Frau, D.; Vargas-Rojo, B. (2020). Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations. Mathematical Biosciences and Engineering. 17(2):1637-1658. https://doi.org/10.3934/mbe.2020086S163716581721. C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102.2. M. Zanin, L. Zunino, O. A. Rosso and D. Papo, Permutation entropy and its main biomedical and econophysics applications: A review, Entropy, 14 (2012), 1553-1577.14. F. Siokis, Credit market jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets, Phys. A Statist. Mechan. Appl., 499 (2018).15. A. F. Bariviera, L. Zunino, M. B. Guercio, L. Martinez and O. Rosso, Efficiency and credit ratings: A permutation-information-theory analysis, J. Statist. Mechan. Theory Exper., 2013 (2013), P08007.16. A. F. Bariviera, M. B. Guercio, L. Martinez and O. Rosso, A permutation information theory tour through different interest rate maturities: the libor case, Philos. Transact. Royal Soc. A Math. Phys. Eng. Sci., 373 (2015).20. B. Fadlallah, B. Chen, A. Keil and J. Príncipe, Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, Phys. Rev. E, 87 (2013), 022911.Deng, B., Cai, L., Li, S., Wang, R., Yu, H., Chen, Y., & Wang, J. (2016). Multivariate multi-scale weighted permutation entropy analysis of EEG complexity for Alzheimer’s disease. Cognitive Neurodynamics, 11(3), 217-231. doi:10.1007/s11571-016-9418-924. D. Cuesta-Frau, Permutation entropy: Influence of amplitude information on time series classification performance, Math. Biosci. Eng., 5 (2019), 1-16.25. F. Traversaro, M. Risk, O. Rosso and F. Redelico, An empirical evaluation of alternative methods of estimation for Permutation Entropy in time series with tied values, arXiv e-prints, arXiv:1707.01517 (2017).26. D. Cuesta-Frau, M. Varela-Entrecanales, A. Molina-Picó and B. Vargas, Patterns with equal values in permutation entropy: Do they really matter for biosignal classification?, Complexity, 2018 (2018), 1-15.29. D. Cuesta-Frau, A. Molina-Picó, B. Vargas and P. González, Permutation entropy: Enhancing discriminating power by using relative frequencies vector of ordinal patterns instead of their shannon entropy, Entropy, 21 (2019).30. H. Azami and J. Escudero, Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation, Comput. Meth. Program. Biomed., 128 (2016), 40-51.32. G. Manis, M. Aktaruzzaman and R. Sassi, Bubble entropy: An entropy almost free of parameters, IEEE Transact. Biomed. Eng., 64 (2017), 2711-2718.34. L. Zunino, F. Olivares, F. Scholkmann and O. A. Rosso, Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions, Phys. Lett. A, 381 (2017), 1883-1892.38. D. E. Lake, J. S. Richman, M. P. Griffin and J. R. Moorman, Sample entropy analysis of neonatal heart rate variability, Am. J. Physiology-Regulatory Integrat. Comparat. Physiol., 283 (2002), R789-R797, PMID: 12185014.41. I. Unal, Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach, Comput. Math. Methods Med., 2017 (2017), 14.47. A. K. Jain, M. N. Murty and P. J. Flynn, Data clustering: A review, ACM Comput. Surv., 31 (1999), 264-323.51. J. Sander, M. Ester, H.-P. Kriegel and X. Xu, Density-based clustering in spatial databases: The algorithm gdbscan and its applications, Data Min. Knowl. Discov., 2 (1998), 169-194.52. J. Wu, Advances in K-means Clustering: A Data Mining Thinking, Springer Publishing Company, Incorporated, 2012.53. S. Panda, S. Sahu, P. Jena and S. Chattopadhyay, Comparing fuzzy-c means and k-means clustering techniques: A comprehensive study, in Advances in Computer Science, Engineering & Applications (eds. D. C. Wyld, J. Zizka and D. Nagamalai), Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, 451-460.54. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 101 (2000), 215-220.58. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David and C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E, 64 (2001), 061907.60. N. Iyengar, C. K. Peng, R. Morin, A. L. Goldberger and L. A. Lipsitz, Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics, Am. J. Physiology-Regulatory Integrat. Comparat. Physiol., 271 (1996), R1078-R1084, PMID: 8898003

    The history and challenges of SCP-ECG: the standard communication protocol for computer-assisted electrocardiography

    Get PDF
    Ever since the first publication of the standard communication protocol for computer-assisted electrocardiography (SCP-ECG), prENV 1064, in 1993, by the European Committee for Standardization (CEN), SCP-ECG has become a leading example in health informatics, enabling open, secure, and well-documented digital data exchange at a low cost, for quick and efficient cardiovascular disease detection and management. Based on the experiences gained, since the 1970s, in computerized electrocardiology, and on the results achieved by the pioneering, international cooperative research on common standards for quantitative electrocardiography (CSE), SCP-ECG was designed, from the beginning, to empower personalized medicine, thanks to serial ECG analysis. The fundamental concept behind SCP-ECG is to convey the necessary information for ECG re-analysis, serial comparison, and interpretation, and to structure the ECG data and metadata in sections that are mostly optional in order to fit all use cases. SCP-ECG is open to the storage of the ECG signal and ECG measurement data, whatever the ECG recording modality or computation method, and can store the over-reading trails and ECG annotations, as well as any computerized or medical interpretation reports. Only the encoding syntax and the semantics of the ECG descriptors and of the diagnosis codes are standardized. We present all of the landmarks in the development and publication of SCP-ECG, from the early 1990s to the 2009 International Organization for Standardization (ISO) SCP-ECG standards, including the latest version published by CEN in 2020, which now encompasses rest and stress ECGs, Holter recordings, and protocol-based trials

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Novel neural approaches to data topology analysis and telemedicine

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen676. INGEGNERIA ELETTRICAnoopenRandazzo, Vincenz

    Automated myocardial infarction diagnosis from ECG

    Get PDF
    In the present dissertation, an automated neural network-based ECG diagnosing system was designed to detect the presence of myocardial infarction based on the hypothesis that an artificial neural network-based ECG interpretation system may improve the clinical myocardial infarction. 137 patients were included. Among them 122 had myocardial infarction, but the remaining 15 were normal. The sensitivity and the specificity of present system were 92.2% and 50.7% respectively. The sensitivity was consistent with relevant research. The relatively low specificity results from the rippling of the low pass filtering. We can conclude that neural network-based system is a promising aid for the myocardial infarction diagnosis

    Novel Approaches to Pervasive and Remote Sensing in Cardiovascular Disease Assessment

    Get PDF
    Cardiovascular diseases (CVDs) are the leading cause of death worldwide, responsible for 45% of all deaths. Nevertheless, their mortality is decreasing in the last decade due to better prevention, diagnosis, and treatment resources. An important medical instrument for the latter processes is the Electrocardiogram (ECG). The ECG is a versatile technique used worldwide for its ease of use, low cost, and accessibility, having evolved from devices that filled up a room, to small patches or wrist- worn devices. Such evolution allowed for more pervasive and near-continuous recordings. The analysis of an ECG allows for studying the functioning of other physiological systems of the body. One such is the Autonomic Nervous System (ANS), responsible for controlling key bodily functions. The ANS can be studied by analyzing the characteristic inter-beat variations, known as Heart Rate Variability (HRV). Leveraging this relation, a pilot study was developed, where HRV was used to quantify the contribution of the ANS in modulating cardioprotection offered by an experimental medical procedure called Remote Ischemic Conditioning (RIC), offering a more objective perspective. To record an ECG, electrodes are responsible for converting the ion-propagated action potential to electrons, needed to record it. They are produced from different materials, including metal, carbon-based, or polymers. Also, they can be divided into wet (if an elec- trolyte gel is used) or dry (if no added electrolyte is used). Electrodes can be positioned either inside the body (in-the-person), attached to the skin (on-the-body), or embedded in daily life objects (off-the-person), with the latter allowing for more pervasive recordings. To this effect, a novel mobile acquisition device for recording ECG rhythm strips was developed, where polymer-based embedded electrodes are used to record ECG signals similar to a medical-grade device. One drawback of off-the-person solutions is the increased noise, mainly caused by the intermittent contact with the recording surfaces. A new signal quality metric was developed based on delayed phase mapping, a technique that maps time series to a two-dimensional space, which is then used to classify a segment into good or noisy. Two different approaches were developed, one using a popular image descriptor, the Hu image moments; and the other using a Convolutional Neural Network, both with promising results for their usage as signal quality index classifiers.As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, res- ponsáveis por 45% de todas estas. No entanto, a sua mortalidade tem vindo a diminuir na última década, devido a melhores recursos na prevenção, diagnóstico e tratamento. Um instrumento médico importante para estes recursos é o Eletrocardiograma (ECG). O ECG é uma técnica versátil utilizada em todo o mundo pela sua facilidade de uso, baixo custo e acessibilidade, tendo evoluído de dispositivos que ocupavam uma sala inteira para pequenos adesivos ou dispositivos de pulso. Tal evolução permitiu aquisições mais pervasivas e quase contínuas. A análise de um ECG permite estudar o funcionamento de outros sistemas fisiológi- cos do corpo. Um deles é o Sistema Nervoso Autônomo (SNA), responsável por controlar as principais funções corporais. O SNA pode ser estudado analisando as variações inter- batidas, conhecidas como Variabilidade da Frequência Cardíaca (VFC). Aproveitando essa relação, foi desenvolvido um estudo piloto, onde a VFC foi utilizada para quantificar a contribuição do SNA na modulação da cardioproteção oferecida por um procedimento mé- dico experimental, denominado Condicionamento Isquêmico Remoto (CIR), oferecendo uma perspectiva mais objetiva. Na aquisição de um ECG, os elétrodos são os responsáveis por converter o potencial de ação propagado por iões em eletrões, necessários para a sua recolha. Estes podem ser produzidos a partir de diferentes materiais, incluindo metal, à base de carbono ou polímeros. Além disso, os elétrodos podem ser classificados em húmidos (se for usado um gel eletrolítico) ou secos (se não for usado um eletrólito adicional). Os elétrodos podem ser posicionados dentro do corpo (dentro-da-pessoa), colocados em contacto com a pele (na-pessoa) ou embutidos em objetos da vida quotidiana (fora-da-pessoa), sendo que este último permite gravações mais pervasivas . Para este efeito, foi desenvolvido um novo dispositivo de aquisição móvel para gravar sinal de ECG, onde elétrodos embutidos à base de polímeros são usados para recolher sinais de ECG semelhantes a um dispositivo de grau médico. Uma desvantagem das soluções onde os elétrodos estão embutidos é o aumento do ruído, causado principalmente pelo contato intermitente com as superfícies de aquisição. Uma nova métrica de qualidade de sinal foi desenvolvida com base no mapeamento de fase atrasada, uma técnica que mapeia séries temporais para um espaço bidimensional, que é então usado para classificar um segmento em bom ou ruidoso. Duas abordagens diferentes foram desenvolvidas, uma usando um popular descritor de imagem, e outra utilizando uma Rede Neural Convolucional, com resultados promissores para o seu uso como classificadores de qualidade de sinal

    A method for context-based adaptive QRS clustering in real-time

    Get PDF
    Continuous follow-up of heart condition through long-term electrocardiogram monitoring is an invaluable tool for diagnosing some cardiac arrhythmias. In such context, providing tools for fast locating alterations of normal conduction patterns is mandatory and still remains an open issue. This work presents a real-time method for adaptive clustering QRS complexes from multilead ECG signals that provides the set of QRS morphologies that appear during an ECG recording. The method processes the QRS complexes sequentially, grouping them into a dynamic set of clusters based on the information content of the temporal context. The clusters are represented by templates which evolve over time and adapt to the QRS morphology changes. Rules to create, merge and remove clusters are defined along with techniques for noise detection in order to avoid their proliferation. To cope with beat misalignment, Derivative Dynamic Time Warping is used. The proposed method has been validated against the MIT-BIH Arrhythmia Database and the AHA ECG Database showing a global purity of 98.56% and 99.56%, respectively. Results show that our proposal not only provides better results than previous offline solutions but also fulfills real-time requirements.Comment: 12 pages, 6 figure

    Classification of cardiac cycles

    Get PDF
    Tato práce se zabývá klasifikací srdečních cyklů, která využívá metodu dynamického borcení času a shlukové analýzy. Metoda dynamického borcení času sice patří mezi starší, avšak pro svou jednoduchost oproti ostatním je stále hodně využívána a také dosahuje dobrých výsledků v praxi. Shluková analýza se využívá v mnoha oborech jako například marketingu nebo právě na biologických signálech. Cílem práce je obecné seznámení se signálem EKG a metodou a realizací algoritmu dynamického borcení času. Následně pak shlukovou analýzou a na závěr vytvořením uživatelského prostředí pro algoritmy.This work deals with the classification of cardiac cycles, which uses a method of dynamic time warping and cluster analysis. Method of dynamic time warping is among the elderly, but for its simplicity compared to others is still very much used, and also achieved good results in practice. Cluster analysis is used in many fields such as marketing or just for biological signals. The aim of this work is a general introduction to the ECG signal and the method and implementation of dynamic time warping algorithm. Subsequently, cluster analysis and finally the creation of the user interface for the algorithms.
    corecore