5,760 research outputs found

    Artificial neural networks in geospatial analysis

    Full text link
    Artificial neural networks are computational models widely used in geospatial analysis for data classification, change detection, clustering, function approximation, and forecasting or prediction. There are many types of neural networks based on learning paradigm and network architectures. Their use is expected to grow with increasing availability of massive data from remote sensing and mobile platforms

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Bagged fuzzy clustering for fuzzy data: An application to a tourism market.

    Get PDF
    Segmentation has several strategic and tactical implications in marketing products and services. Despite hard clustering methods having several weaknesses, they remain widely applied in marketing studies. Alternative segmentation methods such as fuzzy methods are rarely used to understand consumer behaviour. In this study, we propose a strategy of analysis, by combining the Bagged Clustering (BC) method and the fuzzy C-means clustering method for fuzzy data (FCM-FD), i.e., the Bagged fuzzy C-means clustering method for fuzzy data (BFCM-FD). The method inherits the advantages of stability and reproducibility from BC and the flexibility from FCM-FD. The method is applied on a sample of 328 Chinese consumers revealing the existence of four segments (Admirers, Enthusiasts, Moderates, and Apathetics) of the perceived images of Western Europe as a tourist destination. The results highlight the heterogeneity in Chinese consumers' place preferences and implications for place marketing are offered

    A Conceptual Model of Exploration Wayfinding: An Integrated Theoretical Framework and Computational Methodology

    Get PDF
    This thesis is an attempt to integrate contending cognitive approaches to modeling wayfinding behavior. The primary goal is to create a plausible model for exploration tasks within indoor environments. This conceptual model can be extended for practical applications in the design, planning, and Social sciences. Using empirical evidence a cognitive schema is designed that accounts for perceptual and behavioral preferences in pedestrian navigation. Using this created schema, as a guiding framework, the use of network analysis and space syntax act as a computational methods to simulate human exploration wayfinding in unfamiliar indoor environments. The conceptual model provided is then implemented in two ways. First of which is by updating an existing agent-based modeling software directly. The second means of deploying the model is using a spatial interaction model that distributed visual attraction and movement permeability across a graph-representation of building floor plans

    A general framework for intelligent recommender systems

    Get PDF
    AbstractIn this paper, we propose a general framework for an intelligent recommender system that extends the concept of a knowledge-based recommender system. The intelligent recommender system exploits knowledge, learns, discovers new information, infers preferences and criticisms, among other things. For that, the framework of an intelligent recommender system is defined by the following components: knowledge representation paradigm, learning methods, and reasoning mechanisms. Additionally, it has five knowledge models about the different aspects that we can consider during a recommendation: users, items, domain, context and criticisms. The mix of the components exploits the knowledge, updates it and infers, among other things. In this work, we implement one intelligent recommender system based on this framework, using Fuzzy Cognitive Maps (FCMs). Next, we test the performance of the intelligent recommender system with specialized criteria linked to the utilization of the knowledge in order to test the versatility and performance of the framework

    Pedestrian level of service for sidewalks in Tangier City

    Get PDF
    The pedestrian level of service (PLOS) is a measure that quantifies walkway comfort levels. PLOS defined into six categories (A, B, C, D, E, and F) each level defines the range of values, for example, a good level (best traffic condition) is defined with the letter A until reaching the worst level, F (high congestion). This article aims to define the PLOS on sidewalks considering walking conditions in Tangier City (Morocco). Sidewalks are analyzed using video recording in the urban center of Tangier City. The collected data are pedestrian flow and effective sidewalk width. Each level contains a range of values that corresponds to the pedestrian flow that defines the level of service. Clustering techniques are used to identify the threshold of each level using a self-organizing map (SOM). The results are different from those obtained with other methods because pedestrian traffic differs from country to country
    • …
    corecore