9,299 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Evolutionary Synthesis of Analog Electronic Circuits Using EDA Algorithms

    Get PDF
    Disertační práce je zaměřena na návrh analogových elektronických obvodů pomocí algoritmů s pravěpodobnostními modely (algoritmy EDA). Prezentované metody jsou na základě požadovaných charakteristik cílových obvodů schopny navrhnout jak parametry použitých komponent tak také jejich topologii zapojení. Tři různé metody využití EDA algoritmů jsou navrženy a otestovány na příkladech skutečných problémů z oblasti analogových elektronických obvodů. První metoda je určena pro návrh pasivních analogových obvodů a využívá algoritmus UMDA pro návrh jak topologie zapojení tak také hodnot parametrů použitých komponent. Metoda je použita pro návrh admitanční sítě s požadovanou vstupní impedancí pro účely chaotického oscilátoru. Druhá metoda je také určena pro návrh pasivních analogových obvodů a využívá hybridní přístup - UMDA pro návrh topologie a metodu lokální optimalizace pro návrh parametrů komponent. Třetí metoda umožňuje návrh analogových obvodů obsahujících také tranzistory. Metoda využívá hybridní přístup - EDA algoritmus pro syntézu topologie a metoda lokální optimalizace pro určení parametrů použitých komponent. Informace o topologii je v jednotlivých jedincích populace vyjádřena pomocí grafů a hypergrafů.Dissertation thesis is focused on design of analog electronic circuits using Estimation of Distribution Algorithms (EDA). Based on the desired characteristics of the target circuits the proposed methods are able to design the parameters of the used components and theirs topology of connection as well. Three different methods employing EDA algorithms are proposed and verified on examples of real problems from the area of analog circuits design. The first method is capable to design passive analog circuits. The method employs UMDA algorithm which is used for determination of the parameters of the used components and synthesis of the topology of their connection as well. The method is verified on the problem of design of admittance network with desired input impedance function which is used as a part of chaotic oscillator circuit. The second method is also capable to design passive analog circuits. The method employs hybrid approach - UMDA for synthesis of the topology and local optimization method for determination of the parameters of the components. The third method is capable to design analog circuits which include also ac- tive components such as transistors. Hybrid approach is used. The topology is synthesized using EDA algorithm and the parameters are determined using a local optimization method. In the individuals of the population information about the topology is represented using graphs and hypergraphs.

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    Reinforcement learning based local search for grouping problems: A case study on graph coloring

    Get PDF
    Grouping problems aim to partition a set of items into multiple mutually disjoint subsets according to some specific criterion and constraints. Grouping problems cover a large class of important combinatorial optimization problems that are generally computationally difficult. In this paper, we propose a general solution approach for grouping problems, i.e., reinforcement learning based local search (RLS), which combines reinforcement learning techniques with descent-based local search. The viability of the proposed approach is verified on a well-known representative grouping problem (graph coloring) where a very simple descent-based coloring algorithm is applied. Experimental studies on popular DIMACS and COLOR02 benchmark graphs indicate that RLS achieves competitive performances compared to a number of well-known coloring algorithms

    Recovering complete and draft population genomes from metagenome datasets.

    Get PDF
    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution
    • …
    corecore