140 research outputs found

    Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images

    Get PDF
    Assessment of morphological features of megakaryocytes (special kind of cells) in bone marrow trephine biopsies play an important role in the classification of different subtypes of Philadelphia-chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs). In order to aid hematopathologists in the study of megakaryocytes, we propose a novel framework that can efficiently delineate the nuclei and cytoplasm of these cells in digitized images of bone marrow trephine biopsies. The framework first employs a supervised machine learning approach that utilizes color and texture features to delineate megakaryocytic nuclei. It then employs a novel dual-channel active contour model to delineate the boundary of megakaryocytic cytoplasm by using different deconvolved stain channels. Compared to other recent models, the proposed framework achieves accurate results for both megakaryocytic nuclear and cytoplasmic delineation

    Robust Nuclei Segmentation in Cytohistopathological Images Using Statistical Level Set Approach with Topology Preserving Constraint

    Get PDF
    Computerized assessments of cyto-histological specimens have drawn increased attention in the field of digital pathology as the result of developments in digital whole slide scanners and computer hardwares. Due to the essential role of nucleus in cellular functionality, automatic segmentation of cell nuclei is a fundamental prerequisite for all cyto-histological automated systems. In 2D projection images, nuclei commonly appear to overlap each other, and the separation of severely overlapping regions is one of the most challenging tasks in computer vision. In this thesis, we will present a novel segmentation technique which effectively addresses the problem of segmenting touching or overlapping cell nuclei in cyto-histological images. The proposed framework is mainly based upon a statistical level-set approach along with a topology preserving criteria that successfully carries out the task of segmentation and separation of nuclei at the same time. The proposed method is evaluated qualitatively on Hematoxylin and Eosin stained images, and quantitatively and qualitatively on fluorescent stained images. The results indicate that the method outperforms the conventional nuclei segmentation approaches, e.g. thresholding and watershed segmentation

    Medical image segmentation using edge-based active contours.

    Get PDF
    The main purpose of image segmentation using active contours is to extract the object of interest in images based on textural or boundary information. Active contour methods have been widely used in image segmentation applications due to their good boundary detection accuracy. In the context of medical image segmentation, weak edges and inhomogeneities remain important issues that may limit the accuracy of any segmentation method formulated using active contour models. This thesis develops new methods for segmentation of medical images based on the active contour models. Three different approaches are pursued: The first chapter proposes a novel external force that integrates gradient vector flow (GVF) field forces and balloon forces based on a weighting factor computed according to local image features. The proposed external force reduces noise sensitivity, improves performance over weak edges and allows initialization with a single manually selected point. The next chapter proposes a level set method that is based on the minimization of an objective energy functional whose energy terms are weighted according to their relative importance in detecting boundaries. This relative importance is computed based on local edge features collected from the adjacent region inside and outside of the evolving contour. The local edge features employed are the edge intensity and the degree of alignment between the images gradient vector flow field and the evolving contours normal. Finally, chapter 5 presents a framework that is capable of segmenting the cytoplasm of each individual cell and can address the problem of segmenting overlapping cervical cells using edge-based active contours. The main goal of our methodology is to provide significantly fully segmented cells with high accuracy segmentation results. All of the proposed methods are then evaluated for segmentation of various regions in real MRI and CT slices, X-ray images and cervical cell images. Evaluation results show that the proposed method leads to more accurate boundary detection results than other edge-based active contour methods (snake and level-set), particularly around weak edges

    Automatic segmentation of the human thigh muscles in magnetic resonance imaging

    Get PDF
    Advances in magnetic resonance imaging (MRI) and analysis techniques have improved diagnosis and patient treatment pathways. Typically, image analysis requires substantial technical and medical expertise and MR images can su↵er from artefacts, echo and intensity inhomogeneity due to gradient pulse eddy currents and inherent e↵ects of pulse radiation on MRI radio frequency (RF) coils that complicates the analysis. Processing and analysing serial sections of MRI scans to measure tissue volume is an additional challenge as the shapes and the borders between neighbouring tissues change significantly by anatomical location. Medical imaging solutions are needed to avoid laborious manual segmentation of specified regions of interest (ROI) and operator errors. The work set out in this thesis has addressed this challenge with a specific focus on skeletal muscle segmentation of the thigh. The aim was to develop an MRI segmentation framework for the quadriceps muscles, femur and bone marrow. Four contributions of this research include: (1) the development of a semi-automatic segmentation framework for a single transverse-plane image; (2) automatic segmentation of a single transverseplane image; (3) the automatic segmentation of multiple contiguous transverse-plane images from a full MRI thigh scan; and (4) the use of deep learning for MRI thigh quadriceps segmentation. Novel image processing, statistical analysis and machine learning algorithms were developed for all solutions and they were compared against current gold-standard manual segmentation. Frameworks (1) and (3) require minimal input from the user to delineate the muscle border. Overall, the frameworks in (1), (2) and (3) o↵er very good output performance, with respective framework’s mean segmentation accuracy by JSI and processing time of: (1) 0.95 and 17 sec; (2) 0.85 and 22 sec; and (3) 0.93 and 3 sec. For the framework in (4), the ImageNet trained model was customized by replacing the fully-connected layers in its architecture to convolutional layers (hence the name of Fully Convolutional Network (FCN)) and the pre-trained model was transferred for the ROI segmentation task. With the implementation of post-processing for image filtering and morphology to the segmented ROI, we have successfully accomplished a new benchmark for thigh MRI analysis. The mean accuracy and processing time with this framework are 0.9502 (by JSI ) and 0.117 sec per image, respectively

    On biophysical aspects of growth and dynamics of epithelial tissues

    Get PDF
    A fundamental and unresolved question of life is how organs are formed. The shape and form of organs emerges by spatio temporally controlled division and motility of cells. As both processes are tightly coordinated, interactions amongst cells are required to ensure stability and integrity. Many genetic networks controlling the polarised cell motility or promoting cell division have been identified. Action between cells results in an increased complexity. Yet cells give rise to regular patterned organs. The form of objects and their motion is subject to physical laws. Cells are of an active character, divide and move, interesting properties for a material, with potentially new knowledge emerging from their study. Here, we perform a quantitative characterisation of two experimental models for tissue morphogenesis. Using cultured epithelial sheets we address the mechanical properties of growth control and identify regulatory mechanisms. Based on this study, we propose a phenomenological description of tissue dynamics, reproducing the observed data. Using the methods developed to understand the cultured sheet, we approach the role of mechanics in the migration of an embryonic tissue. We measure the directed motion of the tissue and show that the findings can be reproduced by coupling the biophysical model of motile cells to a dynamically regulated polarisation mechanism.Formgebung von Organen ist ein grundlegendes, ungelöstes Problem des Lebens. Ihre Gestalt resultiert aus raumzeitlich kontrollierten Zellteilungen sowie Bewegungen von Zellen. Um mechanische Stabilität sowie Integrität des Gewebes zu gewährleisten, werden Zell-Zell Wechselwirkungen benötigt. Viele genetische Netzwerke kontrollieren die polarisierte Zellbeweglichkeit oder fördern die Zellteilung. Interaktion zwischen Zellen führt zu einer erhöhten Komplexität. Dennoch bilden sich reguläre Muster. Die Form von Objekten und deren Bewegung unterliegt physikalischen Gesetzen. Zellen sind von aktiver Art, teilen und bewegen sich, interessante Eigenschaften für ein Material, welche in neuen Erkenntnissen münden könnten. In dieser Arbeit führen wir eine quantitative Charakterisierung von zwei Modellsystemen der Morphogenese von Geweben durch. Anhand von kultivierten Epithelien behandeln wir die mechanischen Eigenschaften der Wachstumskontrolle und identifizieren Regulationsmechanismen. Darauf aufbauend, schlagen wir eine phänomenologische Modellbeschreibung für Gewebedynamik vor, welche die Beobachtungen reproduziert. Wir machen Gebrauch von diesen Methoden um die Mechanik der Migration eines embryonalen Epithels zu verstehen. Dabei messen wir die gerichtete Bewegung des Gewebes und zeigen, dass die resultierenden Daten durch Kopplung der biophysikalischen Motilitätsbeschreibung an einen dynamisch regulierten Polarisationsmechanismus reproduziert werden

    Quantitative microscopy workflows for the study of cellular receptor trafficking

    Get PDF
    The trafficking and signalling of cellular receptors are complex, intertwined processes with many feedback mechanisms. Confocal microscopy is a powerful tool to study the trafficking of receptors. The aim of this thesis was to report and develop workflows to quantify the spatio-temporal dynamics of receptor trafficking and colocalization using confocal microscopy. Importantly, the workflows should be reproducible and unbiased, as well as automated and accurate. A 4D level set approach is developed to enable accurate cellular segmentation. Temporal constraints are introduced to further improve segmentation accuracy. This novel approach is thoroughly validated, and statistically significant performance increase over equivalent 2D and 3D approaches is demonstrated. We present a confocal microscopy based RNAi depletion screen. Specifically, quantitative workflows to identify genes which perturb the trafficking of receptor are described. Finally, a critical review of current approaches to the quantification of colocalization between receptors and endosomes is presented. Improvements to existing techniques and complete workflows are provided for 4D data (3D time-lapse). Together the described protocols provide a complete microscopy based platform to identify and investigate regulators of receptor signalling and trafficking

    Computer vision for sequential non-invasive microscopy imaging cytometry with applications in embryology

    Get PDF
    Many in vitro cytometric methods requires the sample to be destroyed in the process. Using image analysis of non-invasive microscopy techniques it is possible to monitor samples undisturbed in their natural environment, providing new insights into cell development, morphology and health. As the effect on the sample is minimized, imaging can be sustained for long un-interrupted periods of time, making it possible to study temporal events as well as individual cells over time. These methods are applicable in a number of fields, and are of particular importance in embryological studies, where no sample interference is acceptable. Using long term image capture and digital image cytometry of growing embryos it is possible to perform morphokinetic screening, automated analysis and annotation using proper software tools. By literature reference, one such framework is suggested and the required methods are developed and evaluated. Results are shown in tracking embryos, embryo cell segmentation, analysis of internal cell structures and profiling of cell growth and activity. Two related extensions of the framework into three dimensional embryo analysis and adherent cell monitoring are described
    • …
    corecore