658 research outputs found

    Bridging the Gap between Application and Solid-State-Drives

    Get PDF
    Data storage is one of the important and often critical parts of the computing system in terms of performance, cost, reliability, and energy. Numerous new memory technologies, such as NAND flash, phase change memory (PCM), magnetic RAM (STT-RAM) and Memristor, have emerged recently. Many of them have already entered the production system. Traditional storage optimization and caching algorithms are far from optimal because storage I/Os do not show simple locality. To provide optimal storage we need accurate predictions of I/O behavior. However, the workloads are increasingly dynamic and diverse, making the long and short time I/O prediction challenge. Because of the evolution of the storage technologies and the increasing diversity of workloads, the storage software is becoming more and more complex. For example, Flash Translation Layer (FTL) is added for NAND-flash based Solid State Disks (NAND-SSDs). However, it introduces overhead such as address translation delay and garbage collection costs. There are many recent studies aim to address the overhead. Unfortunately, there is no one-size-fits-all solution due to the variety of workloads. Despite rapidly evolving in storage technologies, the increasing heterogeneity and diversity in machines and workloads coupled with the continued data explosion exacerbate the gap between computing and storage speeds. In this dissertation, we improve the data storage performance from both top-down and bottom-up approach. First, we will investigate exposing the storage level parallelism so that applications can avoid I/O contentions and workloads skew when scheduling the jobs. Second, we will study how architecture aware task scheduling can improve the performance of the application when PCM based NVRAM are equipped. Third, we will develop an I/O correlation aware flash translation layer for NAND-flash based Solid State Disks. Fourth, we will build a DRAM-based correlation aware FTL emulator and study the performance in various filesystems

    ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ์ €์žฅ์žฅ์น˜์˜ ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช… ํ–ฅ์ƒ์„ ์œ„ํ•œ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€์ง€ํ™.์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด, ๊ธฐ์กด์˜ ๋Š๋ฆฐ ํ•˜๋“œ๋””์Šคํฌ(HDD)๋ฅผ ๋น ๋ฅธ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ๋ฐ˜ ์ €์žฅ์žฅ์น˜(SSD)๋กœ ๋Œ€์ฒดํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ตœ๊ทผ ํ™œ๋ฐœํžˆ ์ง„ํ–‰ ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ง€์†์ ์ธ ๋ฐ˜๋„์ฒด ๊ณต์ • ์Šค์ผ€์ผ๋ง ๋ฐ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ๋ง ๊ธฐ์ˆ ๋กœ SSD ๊ฐ€๊ฒฉ์„ ๋™๊ธ‰ HDD ์ˆ˜์ค€์œผ๋กœ ๋‚ฎ์•„์กŒ์ง€๋งŒ, ์ตœ๊ทผ์˜ ์ฒจ๋‹จ ๋””๋ฐ”์ด์Šค ๊ธฐ์ˆ ์˜ ๋ถ€์ž‘์šฉ์œผ ๋กœ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ˆ˜๋ช…์ด ์งง์•„์ง€๋Š” ๊ฒƒ์€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์—์„œ์˜ SSD์˜ ๊ด‘๋ฒ”์œ„ํ•œ ์ฑ„ํƒ์„ ๋ง‰๋Š” ์ฃผ์š” ์žฅ๋ฒฝ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ๊ทผ์˜ ๊ณ ๋ฐ€๋„ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ˆ˜๋ช… ๋ฐ ์„ฑ๋Šฅ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ์˜ ๊ฐœ์„  ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ๋ฒ•์€ ์‘์šฉ ํ”„๋กœ ๊ทธ๋žจ์˜ ์“ฐ๊ธฐ ๋ฌธ๋งฅ์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์กด์—๋Š” ์–ป์„ ์ˆ˜ ์—†์—ˆ๋˜ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ํŒจํ„ด ๋ฐ ์ค‘๋ณต ๋ฐ์ดํ„ฐ ํŒจํ„ด์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ, ๋‹จ์ผ ๊ณ„์ธต์˜ ๋‹จ์ˆœํ•œ ์ •๋ณด๋งŒ์„ ํ™œ์šฉํ–ˆ ๋˜ ๊ธฐ์กด ๊ธฐ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•จ์œผ๋กœ์จ ํšจ๊ณผ์ ์œผ๋กœ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช…์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ I/O ์ž‘์—…์—๋Š” ๋ฌธ๋งฅ์— ๋”ฐ๋ผ ๊ณ ์œ ํ•œ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…๊ณผ ์ค‘ ๋ณต ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์ด ์กด์žฌํ•œ๋‹ค๋Š” ์ ์„ ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋ฌธ๋งฅ ์ •๋ณด๋ฅผ ํšจ๊ณผ ์ ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ (์“ฐ๊ธฐ ๋ฌธ๋งฅ) ์ถ”์ถœ ๋ฐฉ๋ฒ•์„ ๊ตฌํ˜„ ํ•˜์˜€๋‹ค. ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ์ •๋ณด๋ฅผ ํ†ตํ•ด ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜ ๋ถ€ํ•˜์™€ ์ œํ•œ๋œ ์ˆ˜๋ช…์˜ NAND ํ”Œ ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ฐœ์„ ์„ ์œ„ํ•œ ๊ธฐ์กด ๊ธฐ์ˆ ์˜ ํ•œ๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ๋ฉ€ํ‹ฐ ์ŠคํŠธ๋ฆผ SSD์—์„œ WAF๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ์˜ˆ์ธก์˜ ์ •ํ™• ์„ฑ์„ ๋†’์ด๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ I/O ์ปจํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉ ํ•˜๋Š” ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ํ•ต์‹ฌ ๋™๊ธฐ๋Š” ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…์ด LBA๋ณด๋‹ค ๋†’์€ ์ถ”์ƒํ™” ์ˆ˜์ค€์—์„œ ํ‰๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ํ”„ ๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๋ช…์„ ๋ณด๋‹ค ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๊ธฐ๋ฒ•์—์„œ LBA๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…์„ ๊ด€๋ฆฌํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ ๋กœ ๋”ฐ๋ผ์„œ ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜์˜ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ˆ˜๋ช…์ด ์งง์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜๋ช…์ด ๊ธด ๋ฐ์ดํ„ฐ์™€ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฆฌ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์“ฐ๊ธฐ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์˜ ์ค‘๋ณต ๋ฐ์ดํ„ฐ ํŒจํ„ด ๋ถ„์„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆํ•„์š”ํ•œ ์ค‘๋ณต ์ œ๊ฑฐ ์ž‘์—…์„ ํ”ผํ•  ์ˆ˜์žˆ๋Š” ์„ ํƒ์  ์ค‘๋ณต ์ œ๊ฑฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ค‘๋ณต ๋ฐ ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์ง€ ์•Š๋Š” ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๊ฐ€ ์กด์žฌํ•จ์„ ๋ถ„์„์ ์œผ๋กœ ๋ณด์ด๊ณ  ์ด๋“ค์„ ์ œ์™ธํ•จ์œผ๋กœ์จ, ์ค‘๋ณต์ œ๊ฑฐ ๋™์ž‘์˜ ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐœ์ƒ ํ•˜๋Š” ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ธฐ๋ก๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ด€๋ฆฌํ•˜๋Š” ์ž๋ฃŒ๊ตฌ์กฐ ์œ ์ง€ ์ •์ฑ…์„ ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ์„œ๋ธŒ ํŽ˜์ด์ง€ ์ฒญํฌ๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐ ํ•  ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ด๋Š” ์„ธ๋ถ„ํ™” ๋œ ์ค‘๋ณต ์ œ๊ฑฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ์ˆ ์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘ ๋œ I/O ํŠธ๋ ˆ์ด์Šค์— ๊ธฐ๋ฐ˜ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ‰๊ฐ€ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์—๋ฎฌ๋ ˆ์ดํ„ฐ ๊ตฌํ˜„์„ ํ†ตํ•ด ์‹ค์ œ ์‘์šฉ์„ ๋™์ž‘ํ•˜๋ฉด์„œ ์ผ๋ จ์˜ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ๋ฉ€ํ‹ฐ ์ŠคํŠธ๋ฆผ ๋””๋ฐ”์ด์Šค์˜ ๋‚ด๋ถ€ ํŽŒ์›จ์–ด๋ฅผ ์ˆ˜์ •ํ•˜์—ฌ ์‹ค์ œ์™€ ๊ฐ€์žฅ ๋น„์Šทํ•˜๊ฒŒ ์„ค์ •๋œ ํ™˜๊ฒฝ์—์„œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜ ์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ ์ˆ˜์ค€ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช… ๊ฐœ์„  ์ธก๋ฉด์—์„œ ๊ธฐ์กด ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋ณด๋‹ค ๋” ํšจ๊ณผ์ ์ด์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ–ฅํ›„ ์ œ์•ˆ๋œ ๊ธฐ ๋ฒ•๋“ค์ด ๋ณด๋‹ค ๋” ๋ฐœ์ „๋œ๋‹ค๋ฉด, ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์ดˆ๊ณ ์† ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ์ฃผ ์ €์žฅ์žฅ์น˜๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐ์— ๊ธ์ •์ ์ธ ๊ธฐ์—ฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Replacing HDDs with NAND flash-based storage devices (SSDs) has been one of the major challenges in modern computing systems especially in regards to better performance and higher mobility. Although the continuous semiconductor process scaling and multi-leveling techniques lower the price of SSDs to the comparable level of HDDs, the decreasing lifetime of NAND flash memory, as a side effect of recent advanced device technologies, is emerging as one of the major barriers to the wide adoption of SSDs in highperformance computing systems. In this dissertation, system-level lifetime improvement techniques for recent high-density NAND flash memory are proposed. Unlike existing techniques, the proposed techniques resolve the problems of decreasing performance and lifetime of NAND flash memory by exploiting the I/O context of an application to analyze data lifetime patterns or duplicate data contents patterns. We first present that I/O activities of an application have distinct data lifetime and duplicate data patterns. In order to effectively utilize the context information, we implemented the program context extraction method. With the program context, we can overcome the limitations of existing techniques for improving the garbage collection overhead and limited lifetime of NAND flash memory. Second, we propose a system-level approach to reduce WAF that exploits the I/O context of an application to increase the data lifetime prediction for the multi-streamed SSDs. The key motivation behind the proposed technique was that data lifetimes should be estimated at a higher abstraction level than LBAs, so we employ a write program context as a stream management unit. Thus, it can effectively separate data with short lifetimes from data with long lifetimes to improve the efficiency of garbage collection. Lastly, we propose a selective deduplication that can avoid unnecessary deduplication work based on the duplicate data pattern analysis of write program context. With the help of selective deduplication, we also propose fine-grained deduplication which improves the likelihood of eliminating redundant data by introducing sub-page chunk. It also resolves technical difficulties caused by its finer granularity, i.e., increased memory requirement and read response time. In order to evaluate the effectiveness of the proposed techniques, we performed a series of evaluations using both a trace-driven simulator and emulator with I/O traces which were collected from various real-world systems. To understand the feasibility of the proposed techniques, we also implemented them in Linux kernel on top of our in-house flash storage prototype and then evaluated their effects on the lifetime while running real-world applications. Our experimental results show that system-level optimization techniques are more effective over existing optimization techniques.I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Garbage Collection Problem . . . . . . . . . . . . . 2 1.1.2 Limited Endurance Problem . . . . . . . . . . . . . 4 1.2 Dissertation Goals . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . 7 II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 NAND Flash Memory System Software . . . . . . . . . . . 9 2.2 NAND Flash-Based Storage Devices . . . . . . . . . . . . . 10 2.3 Multi-stream Interface . . . . . . . . . . . . . . . . . . . . 11 2.4 Inline Data Deduplication Technique . . . . . . . . . . . . . 12 2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Data Separation Techniques for Multi-streamed SSDs 13 2.5.2 Write Traffic Reduction Techniques . . . . . . . . . 15 2.5.3 Program Context based Optimization Techniques for Operating Systems . . . . . . . . 18 III. Program Context-based Analysis . . . . . . . . . . . . . . . . 21 3.1 Definition and Extraction of Program Context . . . . . . . . 21 3.2 Data Lifetime Patterns of I/O Activities . . . . . . . . . . . 24 3.3 Duplicate Data Patterns of I/O Activities . . . . . . . . . . . 26 IV. Fully Automatic Stream Management For Multi-Streamed SSDs Using Program Contexts . . 29 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 No Automatic Stream Management for General I/O Workloads . . . . . . . . . 33 4.2.2 Limited Number of Supported Streams . . . . . . . 36 4.3 Automatic I/O Activity Management . . . . . . . . . . . . . 38 4.3.1 PC as a Unit of Lifetime Classification for General I/O Workloads . . . . . . . . . . . 39 4.4 Support for Large Number of Streams . . . . . . . . . . . . 41 4.4.1 PCs with Large Lifetime Variances . . . . . . . . . 42 4.4.2 Implementation of Internal Streams . . . . . . . . . 44 4.5 Design and Implementation of PCStream . . . . . . . . . . 46 4.5.1 PC Lifetime Management . . . . . . . . . . . . . . 46 4.5.2 Mapping PCs to SSD streams . . . . . . . . . . . . 49 4.5.3 Internal Stream Management . . . . . . . . . . . . . 50 4.5.4 PC Extraction for Indirect Writes . . . . . . . . . . 51 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . 53 4.6.1 Experimental Settings . . . . . . . . . . . . . . . . 53 4.6.2 Performance Evaluation . . . . . . . . . . . . . . . 55 4.6.3 WAF Comparison . . . . . . . . . . . . . . . . . . . 56 4.6.4 Per-stream Lifetime Distribution Analysis . . . . . . 57 4.6.5 Impact of Internal Streams . . . . . . . . . . . . . . 58 4.6.6 Impact of the PC Attribute Table . . . . . . . . . . . 60 V. Deduplication Technique using Program Contexts . . . . . . 62 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Selective Deduplication using Program Contexts . . . . . . . 63 5.2.1 PCDedup: Improving SSD Deduplication Efficiency using Selective Hash Cache Management . . . . . . 63 5.2.2 2-level LRU Eviction Policy . . . . . . . . . . . . . 68 5.3 Exploiting Small Chunk Size . . . . . . . . . . . . . . . . . 70 5.3.1 Fine-Grained Deduplication . . . . . . . . . . . . . 70 5.3.2 Read Overhead Management . . . . . . . . . . . . . 76 5.3.3 Memory Overhead Management . . . . . . . . . . . 80 5.3.4 Experimental Results . . . . . . . . . . . . . . . . . 82 VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . 88 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2.1 Supporting applications that have unusal program contexts . . . . . . . . . . . . . 89 6.2.2 Optimizing read request based on the I/O context . . 90 6.2.3 Exploiting context information to improve fingerprint lookups . . . . .. . . . . . 91 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Docto

    Cross-Layer Optimization Techniques for Improving Performance and Reliability of NAND Flash-Based Storage Systems

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ๊น€์ง€ํ™.As the cost-per-bit of NAND flash memory is quickly improved by advanced process technologies and multi-leveling techniques, NAND flash-based storage systems are widely employed from mobile embedded systems to high-end enterprise server systems. Although the advanced process and device techniques have greatly improved the cost-per-bit of NAND flash memory, they have also significantly degraded the performance and reliability of NAND flash memory as key side effects of the advanced techniques. In order for NAND flash-based storage systems to be more broadly used in various computing environments, it is critical to overcome the performance and reliability problems of recent high-density NAND flash memory in a satisfactory fashion. In this dissertation, we argue that cross-layer optimization techniques, which vertically integrate various optimization factors from different design abstraction levels, can play key roles in improving performance and reliability of high-density NAND flash memory. First, we propose read-disturb management techniques which reduce the expensive read-disturb management overheads while maintaining reliability of NAND flash memory. An FTL using the read-disturb management module, called redFTL, alleviates highly skewed read accesses to a small part of NAND flash memory into more balanced read accesses to a large number of blocks, thus reducing data migrations needed for avoiding read-disturb errors. As an extended version of redFTL, we propose an integrated read-disturb management technique, called redFTL+, which fundamentally solves read-disturb problems by exploiting a tradeoff between the read disturbance and write speed. By modifying NAND chips to support multiple read modes with different read voltages and write speeds, redFTL+ intelligently allocates frequently-read data to read-resistant blocks. Since the read disturbance is also proportional to the read time, redFTL+ takes advantage of the difference in the read time among different NAND pages by reallocating read-intensive data to read-resistant pages. Second, we propose data separation techniques which reduce garbage collection overhead. We propose a program context-aware data separation technique, called PDS, which can reduce the garbage collection overhead by exploiting program context hints. By using a program context, which serves as a proper granularity of maintaining data update behavior, PDS helps an FTL gather data with similar update times to the same blocks. As an improved version of PDS, we propose an integrated data separation technique, called IDS, which uses both update history of NAND device and program context hints for predicting data update behaviors. By classifying data based on the cross-layer information, an FTL using IDS can make more dead or near-dead blocks over PDS, thus reducing the garbage collection overhead. In order to evaluate the effectiveness of the proposed techniques, we performed a series of evaluations using both a simulator and an emulator with I/O traces which were collected from various systems. Our experimental results show that cross-layer optimization techniques are more effective over our single-layer optimization techniques. RedFTL+ decreases the read-disturb management overhead on average by 24% over redFTL. The IDS-based FTL decreases the garbage collection overhead on aver-age by 18% over the PDS-based FTL. The evaluation results demonstrate that our cross-layer optimization techniques improve an overall performance of NAND-based storage systems over previous single-layered optimization techniques by reducing overheads from read-disturb management and garbage collection while maintaining the reliability of the storage systems.Contents I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Read-Disturb Problem . . . . . . . . . . . . . . . . 2 1.1.2 Garbage Collection Problem . . . . . . . . . . . . . 4 1.2 Research Goals and Contributions . . . . . . . . . . . . . . 7 1.3 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . 9 II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 NAND Flash Memory . . . . . . . . . . . . . . . . . . . . 11 2.2 System Software for NAND Flash Memory . . . . . . . . . 17 2.3 NAND Flash-Based Storage Devices . . . . . . . . . . . . . 18 2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 Read-Disturb Techniques . . . . . . . . . . . . . . . 20 2.4.2 Data Separation Techniques . . . . . . . . . . . . . 21 III. A Single-Layered Read Disturb Management Technique . . . 24 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Performance Implications of Read Disturbs . . . . . . . . . 28 3.2.1 Effect of Frequent Read Reclaims . . . . . . . . . . 28 3.2.2 Effect of Read Reclaims on Response Time Fluctu- ations . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.3 Effect of SSD Read Buffer on Read Reclaims . . . . 31 3.3 Read Disturb Management Techniques . . . . . . . . . . . . 32 3.3.1 Data Distribution Technique . . . . . . . . . . . . . 32 3.3.2 Proactive Data Migration . . . . . . . . . . . . . . . 35 3.4 RedFTL: Read Disturb-Aware FTL . . . . . . . . . . . . . . 35 3.4.1 Overview of RedFTL . . . . . . . . . . . . . . . . . 35 3.4.2 Read-Hot Page Separation . . . . . . . . . . . . . . 37 3.4.3 Good Block Pool Management . . . . . . . . . . . . 38 3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . 38 IV. An Integrated Approach for Read Disturb Management . . . 43 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Read Disturb Management Techniques . . . . . . . . . . . . 46 4.2.1 Mitigation of Read Reclaims by Read Voltage Scaling 47 4.2.2 Mitigation of Read Reclaims by Read Operation Time Scaling . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 NAND Read-Disturbance Model . . . . . . . . . . . 55 4.3 Design and Implementation of RedFTL+ . . . . . . . . . . . 57 4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Dynamic Mode Selection . . . . . . . . . . . . . . . 58 4.3.3 Distributed Migration to RRBs . . . . . . . . . . . . 59 4.3.4 Read-Hotness Detection . . . . . . . . . . . . . . . 61 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 63 V. A Single-Layered Data Separation Technique . . . . . . . . . 70 5.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.1 Frequency-Based Data Separation . . . . . . . . . . 70 5.1.2 Garbage Collection Using ORA . . . . . . . . . . . 73 5.1.3 Evaluation of Existing Locality-based Heuristic . . . 74 5.2 Correlation between Program Contexts and Updates . . . . 78 5.3 PDS: Program Context-Aware Data Separation Technique . . 82 5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 87 VI. An Integrated Data Separation Technique . . . . . . . . . . . 93 6.1 Limitations of Single-Layered Program Context-Aware Data Separation Technique . . . . . . . . . . . . . . . . . . . . . 93 6.2 IDS: Integrated Data Separation Technique . . . . . . . . . 94 6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . 94 6.2.2 Determination of Update Program Context . . . . . 96 6.2.3 Dynamic Clustering Program Contexts Based On Update Locality . . . . . . . . . . . . . . . . . . . . 96 6.2.4 Managing The Hot Data Associated with An Update Program Context . . . . . . . . . . . . . . . . 103 6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 104 VII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.2.1 Improving QoS of RedFTL+ by Exploiting Program Context Hints . . . . . . . . . . . . . . . . . . 114 7.2.2 Mitigating Read-Disturb Problem by Read Disturb- Aware Read Buffer Management Technique . . . . . 115 7.2.3 Improving Efficiency of Garbage Collection by Adjusting GC Trigger Points . . . . . . . . . . . . . . 115 7.2.4 Improving Performance and Reliability of NAND Flash Memory by Integrating Various Techniques . . 117 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Docto

    Flash Memory Devices

    Get PDF
    Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today โ€œ3Dโ€ means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement

    Exploiting solid state drive parallelism for real-time flash storage

    Full text link
    The increased volume of sensor data generated by emerging applications in areas such as autonomous vehicles requires new technologies for storage and retrieval. NAND flash memory has desirable characteristics for real-time information storage and retrieval, such as non-volatility, shock resistance, low power consumption and fast access time. However, NAND flash memory management suffers high tail latency during storage space reclamation. This is unacceptable in a real-time system, where missed deadlines can have potentially catastrophic consequences. Current methods to ensure timing guarantees in flash storage do not explicitly exploit the internal parallelism in Solid State Drives (SSDs). Modern SSDs are able to support massive amounts of parallelism, as evidenced by the shift from the Advanced Host Controller Interface (AHCI) to the Non-Volatile Memory Host Controller Interface (NVMe), a multi-queue interface. This thesis focuses on providing predictable, low-latency guarantees for read and write requests in NAND flash memory by exploiting the internal parallelism in SSDs. The first part of the thesis presents a partitioned flash design that dynamically assigns each parallel flash unit to perform either reads or writes. To access data from a flash unit that is busy servicing a write request or performing garbage collection, the device rebuilds the data using encoding. Consequently, reads are never blocked by writes or storage space reclamation. In this design, however, low read latency is achieved at the expense of write throughput. The second part of the thesis explores how to predictably improve performance by minimizing the garbage collection cost in flash storage. The root cause of this extra cost is due to the SSDโ€™s inability to accurately determine data lifetime and group together data that expires before space needs to be reclaimed. This is exacerbated by the narrow block I/O interface, which prevents optimizations from either the device or the application above. By sharing application-specific knowledge of data lifetime with the device, the SSD is able to efficiently lay out data such that garbage collection cost is minimized
    • โ€ฆ
    corecore