328 research outputs found

    XNet: A convolutional neural network (CNN) implementation for medical X-Ray image segmentation suitable for small datasets

    Full text link
    X-Ray image enhancement, along with many other medical image processing applications, requires the segmentation of images into bone, soft tissue, and open beam regions. We apply a machine learning approach to this problem, presenting an end-to-end solution which results in robust and efficient inference. Since medical institutions frequently do not have the resources to process and label the large quantity of X-Ray images usually needed for neural network training, we design an end-to-end solution for small datasets, while achieving state-of-the-art results. Our implementation produces an overall accuracy of 92%, F1 score of 0.92, and an AUC of 0.98, surpassing classical image processing techniques, such as clustering and entropy based methods, while improving upon the output of existing neural networks used for segmentation in non-medical contexts. The code used for this project is available online.Comment: 11 pages, 5 figures, 2 table

    A Survey on Artificial Intelligence Techniques for Biomedical Image Analysis in Skeleton-Based Forensic Human Identification

    Get PDF
    This paper represents the first survey on the application of AI techniques for the analysis of biomedical images with forensic human identification purposes. Human identification is of great relevance in today’s society and, in particular, in medico-legal contexts. As consequence, all technological advances that are introduced in this field can contribute to the increasing necessity for accurate and robust tools that allow for establishing and verifying human identity. We first describe the importance and applicability of forensic anthropology in many identification scenarios. Later, we present the main trends related to the application of computer vision, machine learning and soft computing techniques to the estimation of the biological profile, the identification through comparative radiography and craniofacial superimposition, traumatism and pathology analysis, as well as facial reconstruction. The potentialities and limitations of the employed approaches are described, and we conclude with a discussion about methodological issues and future research.Spanish Ministry of Science, Innovation and UniversitiesEuropean Union (EU) PGC2018-101216-B-I00Regional Government of Andalusia under grant EXAISFI P18-FR-4262Instituto de Salud Carlos IIIEuropean Union (EU) DTS18/00136European Commission H2020-MSCA-IF-2016 through the Skeleton-ID Marie Curie Individual Fellowship 746592Spanish Ministry of Science, Innovation and Universities-CDTI, Neotec program 2019 EXP-00122609/SNEO-20191236European Union (EU)Xunta de Galicia ED431G 2019/01European Union (EU) RTI2018-095894-B-I0

    High-Resolution Quantitative Cone-Beam Computed Tomography: Systems, Modeling, and Analysis for Improved Musculoskeletal Imaging

    Get PDF
    This dissertation applies accurate models of imaging physics, new high-resolution imaging hardware, and novel image analysis techniques to benefit quantitative applications of x-ray CT in in vivo assessment of bone health. We pursue three Aims: 1. Characterization of macroscopic joint space morphology, 2. Estimation of bone mineral density (BMD), and 3. Visualization of bone microstructure. This work contributes to the development of extremity cone-beam CT (CBCT), a compact system for musculoskeletal (MSK) imaging. Joint space morphology is characterized by a model which draws an analogy between the bones of a joint and the plates of a capacitor. Virtual electric field lines connecting the two surfaces of the joint are computed as a surrogate measure of joint space width, creating a rich, non-degenerate, adaptive map of the joint space. We showed that by using such maps, a classifier can outperform radiologist measurements at identifying osteoarthritic patients in a set of CBCT scans. Quantitative BMD accuracy is achieved by combining a polyenergetic model-based iterative reconstruction (MBIR) method with fast Monte Carlo (MC) scatter estimation. On a benchtop system emulating extremity CBCT, we validated BMD accuracy and reproducibility via a series of phantom studies involving inserts of known mineral concentrations and a cadaver specimen. High-resolution imaging is achieved using a complementary metal-oxide semiconductor (CMOS)-based x-ray detector featuring small pixel size and low readout noise. A cascaded systems model was used to performed task-based optimization to determine optimal detector scintillator thickness in nominal extremity CBCT imaging conditions. We validated the performance of a prototype scanner incorporating our optimization result. Strong correlation was found between bone microstructure metrics obtained from the prototype scanner and µCT gold standard for trabecular bone samples from a cadaver ulna. Additionally, we devised a multiresolution reconstruction scheme allowing fast MBIR to be applied to large, high-resolution projection data. To model the full scanned volume in the reconstruction forward model, regions outside a finely sampled region-of-interest (ROI) are downsampled, reducing runtime and cutting memory requirements while maintaining image quality in the ROI

    A total hip replacement toolbox : from CT-scan to patient-specific FE analysis

    Get PDF

    A 3D environment for surgical planning and simulation

    Get PDF
    The use of Computed Tomography (CT) images and their three-dimensional (3D) reconstruction has spread in the last decade for implantology and surgery. A common use of acquired CT datasets is to be handled by dedicated software that provide a work context to accomplish preoperative planning upon. These software are able to exploit image processing techniques and computer graphics to provide fundamental information needed to work in safety, in order to minimize the surgeon possible error during the surgical operation. However, most of them carry on lacks and flaws, that compromise the precision and additional safety that their use should provide. The research accomplished during my PhD career has concerned the development of an optimized software for surgical preoperative planning. With this purpose, the state of the art has been analyzed, and main deficiencies have been identified. Then, in order to produce practical solutions, those lacks and defects have been contextualized in a medical field in particular: it has been opted for oral implantology, due to the available support of a pool of implantologists. It has emerged that most software systems for oral implantology, that are based on a multi-view approach, often accompanied with a 3D rendered model, are affected by the following problems: unreliability of measurements computed upon misleading views (panoramic one), as well as a not optimized use of the 3D environment, significant planning errors implied by the software work context (incorrect cross-sectional planes), and absence of automatic recognition of fundamental anatomies (as the mandibular canal). Thus, it has been defined a fully 3D approach, and a planning software system in particular, where image processing and computer graphic techniques have been used to create a smooth and user-friendly completely-3D environment to work upon for oral implant planning and simulation. Interpolation of the axial slices is used to produce a continuous radiographic volume and to get an isotropic voxel, in order to achieve a correct work context. Freedom of choosing, arbitrarily, during the planning phase, the best cross-sectional plane for achieving correct measurements is obtained through interpolation and texture generation. Correct orientation of the planned implants is also easily computed, by exploiting a radiological mask with radio-opaque markers, worn by the patient during the CT scan, and reconstructing the cross-sectional images along the preferred directions. The mandibular canal is automatically recognised through an adaptive surface-extracting statistical-segmentation based algorithm developed on purpose. Then, aiming at completing the overall approach, interfacing between the software and an anthropomorphic robot, in order to being able to transfer the planning on a surgical guide, has been achieved through proper coordinates change and exploiting a physical reference frame in the radiological stent. Finally, every software feature has been evaluated and validated, statistically or clinically, and it has resulted that the precision achieved outperforms the one in literature

    Visualizing and Predicting the Effects of Rheumatoid Arthritis on Hands

    Get PDF
    This dissertation was inspired by difficult decisions patients of chronic diseases have to make about about treatment options in light of uncertainty. We look at rheumatoid arthritis (RA), a chronic, autoimmune disease that primarily affects the synovial joints of the hands and causes pain and deformities. In this work, we focus on several parts of a computer-based decision tool that patients can interact with using gestures, ask questions about the disease, and visualize possible futures. We propose a hand gesture based interaction method that is easily setup in a doctor\u27s office and can be trained using a custom set of gestures that are least painful. Our system is versatile and can be used for operations like simple selections to navigating a 3D world. We propose a point distribution model (PDM) that is capable of modeling hand deformities that occur due to RA and a generalized fitting method for use on radiographs of hands. Using our shape model, we show novel visualization of disease progression. Using expertly staged radiographs, we propose a novel distance metric learning and embedding technique that can be used to automatically stage an unlabeled radiograph. Given a large set of expertly labeled radiographs, our data-driven approach can be used to extract different modes of deformation specific to a disease

    Segmentation of neuroanatomy in magnetic resonance images

    Get PDF
    Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume measurement, feature extraction and for the three-dimensional display of neuroanatomy. This thesis proposes several automated and semi-automated methods which offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. Work has concentrated on the use of dual echo multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric nature of MRI. Such data is widely acquired clinically and segmentation therefore does not require additional scans. The literature has been reviewed. Factors affecting image non-uniformity for a modem 1.5 Tesla imager have been investigated. These investigations demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be applied to data as a pre-processing step. The merit of using an anisotropic smoothing method for noisy data has been demonstrated. Several approaches to neurological MRI segmentation have been developed. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing, two threshold based techniques and a fast radial CSF identification approach are proposed to identify the intracranial region contour in each slice of the data set. Once isolated, the intracranial region is further processed to identify CSF, and, depending upon the MRI pulse sequence used, the brain itself may be sub-divided into grey matter and white matter using semiautomatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis (MS) plaques has also been considered. The utility of the stack, a data driven multi-resolution approach to segmentation, has been investigated, and several improvements to the method suggested. The factors affecting the intrinsic accuracy of neurological volume measurement in MRI have been studied and their magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and object independent - has been considered, as well as slice warp, slice profile, slice position and the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in this thesis have been evaluated. Intracranial volume measurements are within 5% of expert observers' measurements, white matter volumes within 10%, and CSF volumes consistently lower than the expert observers' measurements due to the observers' inability to take the partial volume effect into account
    corecore