4,025 research outputs found

    Common adversaries form alliances: modelling complex networks via anti-transitivity

    Full text link
    Anti-transitivity captures the notion that enemies of enemies are friends, and arises naturally in the study of adversaries in social networks and in the study of conflicting nation states or organizations. We present a simplified, evolutionary model for anti-transitivity influencing link formation in complex networks, and analyze the model's network dynamics. The Iterated Local Anti-Transitivity (or ILAT) model creates anti-clone nodes in each time-step, and joins anti-clones to the parent node's non-neighbor set. The graphs generated by ILAT exhibit familiar properties of complex networks such as densification, short distances (bounded by absolute constants), and bad spectral expansion. We determine the cop and domination number for graphs generated by ILAT, and finish with an analysis of their clustering coefficients. We interpret these results within the context of real-world complex networks and present open problems

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs
    corecore