686 research outputs found

    NeuDetect: A neural network data mining system for wireless network intrusion detection

    Get PDF
    This thesis proposes an Intrusion Detection System, NeuDetect, which applies Neural Network technique to wireless network packets captured through hardware sensors for purposes of real time detection of anomalous packets. To address the problem of high false alarm rate confronted by the current wireless intrusion detection systems, this thesis presents a method of applying the artificial neural networks technique to the wireless network intrusion detection system. The proposed system solution approach is to find normal and anomalous patterns on preprocessed wireless packet records by comparing them with training data using Back-propagation algorithm. An anomaly score is assigned to each packet by calculating the difference between the output error and threshold. If the anomaly score is positive then the wireless packet is flagged as anomalous and is negative then the packet is flagged as normal. If the anomaly score is zero or close to zero it will be flagged as an unknown attack and will be sent back to training process for re-evaluation

    Proceedings of the GIS Research UK 18th Annual Conference GISRUK 2010

    Get PDF
    This volume holds the papers from the 18th annual GIS Research UK (GISRUK). This year the conference, hosted at University College London (UCL), from Wednesday 14 to Friday 16 April 2010. The conference covered the areas of core geographic information science research as well as applications domains such as crime and health and technological developments in LBS and the geoweb. UCL’s research mission as a global university is based around a series of Grand Challenges that affect us all, and these were accommodated in GISRUK 2010. The overarching theme this year was “Global Challenges”, with specific focus on the following themes: * Crime and Place * Environmental Change * Intelligent Transport * Public Health and Epidemiology * Simulation and Modelling * London as a global city * The geoweb and neo-geography * Open GIS and Volunteered Geographic Information * Human-Computer Interaction and GIS Traditionally, GISRUK has provided a platform for early career researchers as well as those with a significant track record of achievement in the area. As such, the conference provides a welcome blend of innovative thinking and mature reflection. GISRUK is the premier academic GIS conference in the UK and we are keen to maintain its outstanding record of achievement in developing GIS in the UK and beyond

    Evaluation of Parametric and Nonparametric Statistical Models in Wrong-way Driving Crash Severity Prediction

    Get PDF
    Wrong-way driving (WWD) crashes result in more fatalities per crash, involve more vehicles, and cause extended road closures compared to other types of crashes. Although crashes involving wrong-way drivers are relatively few, they often lead to fatalities and serious injuries. Researchers have been using parametric statistical models to identify factors that affect WWD crash severity. However, these parametric models are generally based on several assumptions, and the results could generate numerous errors and become questionable when these assumptions are violated. On the other hand, nonparametric methods such as data mining or machine learning techniques do not use a predetermined functional form, can address the correlation problem among independent variables, display results graphically, and simplify the potential complex relationship between the variables. The main objective of this research was to demonstrate the applicability of nonparametric statistical models in successfully identifying factors affecting traffic crash severity. To achieve this goal, the performance of parametric and nonparametric statistical models in WWD crash severity prediction was evaluated. The following parametric methods were evaluated: Logistic Regression (LR), Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), and Gaussian Naïve Bayes (GNB). The following nonparametric methods were evaluated: Random Forests (RF), Decision Trees (DT), and Support Vector Machine (SVM). The evaluation was based on sensitivity, specificity, and prediction accuracy. The research also demonstrated the applicability of nonparametric supervised learning algorithms on crash severity analysis by combining tree-based data mining techniques and marginal effect analysis to show the correlation between the response and the predictor variables. The analysis was based on 1,475 WWD crashes that occurred on arterial road networks from 2012-2016 in Florida. The results showed that nonparametric models provided better prediction accuracy on predicting serious injury compared to parametric models. By conducting prediction accuracy comparison, contributor variables’ marginal effect analysis, variable importance evaluation, and crash severity pattern recognition analysis, the nonparametric models have been demonstrated to be valid and proved to serve as an alternative tool in transportation safety studies. The results showed that head-on collisions, weekends, high-speed facilities, crashes involving vehicles entering from a driveway, dark-not lighted roadways, older drivers, and driver impairment are important factors that play a crucial role in WWD crash severity on non-limited access facilities. This information may assist researchers and safety engineers in identifying specific strategies to reduce the severity of WWD crashes on arterial streets. Besides unveiling the factors contributing to WWD crash severity and their relationship with each other, this research has demonstrated the potential of using data mining techniques in yielding results that are easily understandable and interpretable

    Security in Data Mining- A Comprehensive Survey

    Get PDF
    Data mining techniques, while allowing the individuals to extract hidden knowledge on one hand, introduce a number of privacy threats on the other hand. In this paper, we study some of these issues along with a detailed discussion on the applications of various data mining techniques for providing security. An efficient classification technique when used properly, would allow an user to differentiate between a phishing website and a normal website, to classify the users as normal users and criminals based on their activities on Social networks (Crime Profiling) and to prevent users from executing malicious codes by labelling them as malicious. The most important applications of Data mining is the detection of intrusions, where different Data mining techniques can be applied to effectively detect an intrusion and report in real time so that necessary actions are taken to thwart the attempts of the intruder. Privacy Preservation, Outlier Detection, Anomaly Detection and PhishingWebsite Classification are discussed in this paper

    Big Data - Supply Chain Management Framework for Forecasting: Data Preprocessing and Machine Learning Techniques

    Full text link
    This article intends to systematically identify and comparatively analyze state-of-the-art supply chain (SC) forecasting strategies and technologies. A novel framework has been proposed incorporating Big Data Analytics in SC Management (problem identification, data sources, exploratory data analysis, machine-learning model training, hyperparameter tuning, performance evaluation, and optimization), forecasting effects on human-workforce, inventory, and overall SC. Initially, the need to collect data according to SC strategy and how to collect them has been discussed. The article discusses the need for different types of forecasting according to the period or SC objective. The SC KPIs and the error-measurement systems have been recommended to optimize the top-performing model. The adverse effects of phantom inventory on forecasting and the dependence of managerial decisions on the SC KPIs for determining model performance parameters and improving operations management, transparency, and planning efficiency have been illustrated. The cyclic connection within the framework introduces preprocessing optimization based on the post-process KPIs, optimizing the overall control process (inventory management, workforce determination, cost, production and capacity planning). The contribution of this research lies in the standard SC process framework proposal, recommended forecasting data analysis, forecasting effects on SC performance, machine learning algorithms optimization followed, and in shedding light on future research

    Evaluating the effects of road hump on speed and noise level at a university setting

    Get PDF
    This study is carried out to determine the effectivness of road humps to reduce the traffic speed and traffic noise in institutional area. The difference in hump profiles in terms of height, width and length are the main factors in determing the effectiveness of road humps. The difference in the profiles of the road hump will cause changing driver behaviour of the users especially when approaching the road hump. The road humps with different design profiles are selected to measure the speed and noise level of the vehicles at, before and after each of the selected road humps. Radar speed gun and noise level meters are used to measure speed and noise level of the vehicles at each of designated points along the major circular road in IIUM. The changes in speed and noise level at different selected points at each of the different profiles of the road humps are the expected findings of this study

    Evaluating the effects of road hump on the speed of vehicles in an institutional environment

    Get PDF
    Vehicles travelling at speed above the permissible speed limit have jeopardized the safety of road users. The concern is greater at institutional environment whereby most road users travel by walking. Road hump is considered as an efficient traffic calming measure in reducing the speed of the vehicle. This paper investigates the effects of different road hump dimensions in decreasing the speed of vehicles at the main road of International Islamic University Malaysia. Six (6) road humps with different design profile were selected. The design profile and spot speed of the vehicles at all six (6) road humps were measured. The speed of vehicles at the road hump was analyzed by using descriptive analysis and t-test. The findings of this study suggest that road hump is effective in lowering the speed of vehicles in an institutional environment. The dimensions of road hump, especially height, influence significantly the speed reduction of vehicles

    Community Time-Activity Trajectory Modelling based on Markov Chain Simulation and Dirichlet Regression

    Full text link
    Accurate modeling of human time-activity trajectory is essential to support community resilience and emergency response strategies such as daily energy planning and urban seismic vulnerability assessment. However, existing modeling of time-activity trajectory is only driven by socio-demographic information with identical activity trajectories shared among the same group of people and neglects the influence of the environment. To further improve human time-activity trajectory modeling, this paper constructs community time-activity trajectory and analyzes how social-demographic and built environment influence people s activity trajectory based on Markov Chains and Dirichlet Regression. We use the New York area as a case study and gather data from American Time Use Survey, Policy Map, and the New York City Energy & Water Performance Map to evaluate the proposed method. To validate the regression model, Box s M Test and T-test are performed with 80% data training the model and the left 20% as the test sample. The modeling results align well with the actual human behavior trajectories, demonstrating the effectiveness of the proposed method. It also shows that both social-demographic and built environment factors will significantly impact a community's time-activity trajectory. Specifically, 1) Diversity and median age both have a significant influence on the proportion of time people assign to education activity. 2) Transportation condition affects people s activity trajectory in the way that longer commute time decreases the proportion of biological activity (eg. sleeping and eating) and increases people s working time. 3) Residential density affects almost all activities with a significant p-value for all biological needs, household management, working, education, and personal preference.Comment: to be published in Computers, Environment and Urban Syste

    MOBILITY AND ACTIVITY SPACE: UNDERSTANDING HUMAN DYNAMICS FROM MOBILE PHONE LOCATION DATA

    Get PDF
    Studying human mobility patterns and people’s use of space has been a major focus in geographic research for ages. Recent advancements of location-aware technologies have produced large collections of individual tracking datasets. Mobile phone location data, as one of the many emerging data sources, provide new opportunities to understand how people move around at a relatively low cost and unprecedented scale. However, the increasing data volume, issue of data sparsity, and lack of supplementary information introduce additional challenges when such data are used for human behavioral research. Effective analytical methods are needed to meet the challenges to gain an improved understanding of individual mobility and collective behavioral patterns. This dissertation proposes several approaches for analyzing two types of mobile phone location data (Call Detail Records and Actively Tracked Mobile Phone Location Data) to uncover important characteristics of human mobility patterns and activity spaces. First, it introduces a home-based approach to understanding the spatial extent of individual activity space and the geographic patterns of aggregate activity space characteristics. Second, this study proposes an analytical framework which is capable of examining multiple determinants of individual activity space simultaneously. Third, the study introduces an anchor-point based trajectory segmentation method to uncover potential demand of bicycle trips in a city. The major contributions of this dissertation include: (1) introducing an activity space measure that can be used to evaluate how individuals use urban space around where they live; (2) proposing an analytical framework with three individual mobility indicators that can be used to summarize and compare human activity spaces systematically across different population groups or geographic regions; (3) developing analytical methods for uncovering the spatiotemporal dynamics of travel demand that can be potentially served by bicycles in a city, and providing suggestions for the locations and daily operation of bike sharing stations
    corecore