162,731 research outputs found

    On clustering financial time series: a need for distances between dependent random variables

    Full text link
    The following working document summarizes our work on the clustering of financial time series. It was written for a workshop on information geometry and its application for image and signal processing. This workshop brought several experts in pure and applied mathematics together with applied researchers from medical imaging, radar signal processing and finance. The authors belong to the latter group. This document was written as a long introduction to further development of geometric tools in financial applications such as risk or portfolio analysis. Indeed, risk and portfolio analysis essentially rely on covariance matrices. Besides that the Gaussian assumption is known to be inaccurate, covariance matrices are difficult to estimate from empirical data. To filter noise from the empirical estimate, Mantegna proposed using hierarchical clustering. In this work, we first show that this procedure is statistically consistent. Then, we propose to use clustering with a much broader application than the filtering of empirical covariance matrices from the estimate correlation coefficients. To be able to do that, we need to obtain distances between the financial time series that incorporate all the available information in these cross-dependent random processes.Comment: Work presented during a workshop on Information Geometry at the International Centre for Mathematical Sciences, Edinburgh, U

    Explicit approximation of stochastic optimal feedback control for combined therapy of cancer

    Full text link
    In this paper, a tractable methodology is proposed to approximate stochastic optimal feedback treatment in the context of mixed immuno-chemo therapy of cancer. The method uses a fixed-point value iteration that approximately solves a stochastic dynamic programming-like equation. It is in particular shown that the introduction of a variance-related penalty in the latter induces better results that cope with the consequences of softening the health safety constraints in the cost function. The convergence of the value function iteration is revisited in the presence of the variance related term. The implementation involves some Machine Learning tools in order to represent the optimal function and to perform complexity reduction by clustering. Quantitative illustration is given using a commonly used model of combined therapy involving twelve highly uncertain parameters

    Visual Analytics of Image-Centric Cohort Studies in Epidemiology

    Full text link
    Epidemiology characterizes the influence of causes to disease and health conditions of defined populations. Cohort studies are population-based studies involving usually large numbers of randomly selected individuals and comprising numerous attributes, ranging from self-reported interview data to results from various medical examinations, e.g., blood and urine samples. Since recently, medical imaging has been used as an additional instrument to assess risk factors and potential prognostic information. In this chapter, we discuss such studies and how the evaluation may benefit from visual analytics. Cluster analysis to define groups, reliable image analysis of organs in medical imaging data and shape space exploration to characterize anatomical shapes are among the visual analytics tools that may enable epidemiologists to fully exploit the potential of their huge and complex data. To gain acceptance, visual analytics tools need to complement more classical epidemiologic tools, primarily hypothesis-driven statistical analysis

    AntiPlag: Plagiarism Detection on Electronic Submissions of Text Based Assignments

    Full text link
    Plagiarism is one of the growing issues in academia and is always a concern in Universities and other academic institutions. The situation is becoming even worse with the availability of ample resources on the web. This paper focuses on creating an effective and fast tool for plagiarism detection for text based electronic assignments. Our plagiarism detection tool named AntiPlag is developed using the tri-gram sequence matching technique. Three sets of text based assignments were tested by AntiPlag and the results were compared against an existing commercial plagiarism detection tool. AntiPlag showed better results in terms of false positives compared to the commercial tool due to the pre-processing steps performed in AntiPlag. In addition, to improve the detection latency, AntiPlag applies a data clustering technique making it four times faster than the commercial tool considered. AntiPlag could be used to isolate plagiarized text based assignments from non-plagiarised assignments easily. Therefore, we present AntiPlag, a fast and effective tool for plagiarism detection on text based electronic assignments

    Mining the Workload of Real Grid Computing Systems

    Full text link
    Since the mid 1990s, grid computing systems have emerged as an analogy for making computing power as pervasive an easily accessible as an electric power grid. Since then, grid computing systems have been shown to be able to provide very large amounts of storage and computing power to mainly support the scientific and engineering research on a wide geographic scale. Understanding the workload characteristics incoming to such systems is a milestone for the design and the tuning of effective resource management strategies. This is accomplished through the workload characterization, where workload characteristics are analyzed and a possibly realistic model for those is obtained. In this paper, we study the workload of some real grid systems by using a data mining approach to build a workload model for job interarrival time and runtime, and a Bayesian approach to capture user correlations and usage patterns. The final model is then validated against the workload coming from a real grid system

    Discriminating Topology in Galaxy Distributions using Network Analysis

    Full text link
    (abridged) The large-scale distribution of galaxies is generally analyzed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a L\'evy walk. For the cosmological simulation, we adopt the redshift z=0.58z = 0.58 slice from Illustris (Vogelsberger et al. 2014A) and select galaxies with stellar masses greater than 10810^8MM_\odot. The two point correlation function of these simulated galaxies follows a single power-law, ξ(r)r1.5\xi(r) \sim r^{-1.5}. Then, we generate L\'evy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two point correlation function, their spatial distributions are very different; most prominently, \emph{filamentary structures}, absent in L\'evy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a L\'evy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.Comment: 11 pages, 5 figures, submitted to MNRAS on 12/15/2015, now fully reviewed for publication; more information about our network analyses can be found at https://sites.google.com/site/shongscience/researc

    Attribute Identification and Predictive Customisation Using Fuzzy Clustering and Genetic Search for Industry 4.0 Environments

    Get PDF
    Today´s factory involves more services and customisation. A paradigm shift is towards “Industry 4.0” (i4) aiming at realising mass customisation at a mass production cost. However, there is a lack of tools for customer informatics. This paper addresses this issue and develops a predictive analytics framework integrating big data analysis and business informatics, using Computational Intelligence (CI). In particular, a fuzzy c-means is used for pattern recognition, as well as managing relevant big data for feeding potential customer needs and wants for improved productivity at the design stage for customised mass production. The selection of patterns from big data is performed using a genetic algorithm with fuzzy c-means, which helps with clustering and selection of optimal attributes. The case study shows that fuzzy c-means are able to assign new clusters with growing knowledge of customer needs and wants. The dataset has three types of entities: specification of various characteristics, assigned insurance risk rating, and normalised losses in use compared with other cars. The fuzzy c-means tool offers a number of features suitable for smart designs for an i4 environment

    Grid-based Approaches for Distributed Data Mining Applications

    Full text link
    The data mining field is an important source of large-scale applications and datasets which are getting more and more common. In this paper, we present grid-based approaches for two basic data mining applications, and a performance evaluation on an experimental grid environment that provides interesting monitoring capabilities and configuration tools. We propose a new distributed clustering approach and a distributed frequent itemsets generation well-adapted for grid environments. Performance evaluation is done using the Condor system and its workflow manager DAGMan. We also compare this performance analysis to a simple analytical model to evaluate the overheads related to the workflow engine and the underlying grid system. This will specifically show that realistic performance expectations are currently difficult to achieve on the grid

    Processing Tweets for Cybersecurity Threat Awareness

    Full text link
    Receiving timely and relevant security information is crucial for maintaining a high-security level on an IT infrastructure. This information can be extracted from Open Source Intelligence published daily by users, security organisations, and researchers. In particular, Twitter has become an information hub for obtaining cutting-edge information about many subjects, including cybersecurity. This work proposes SYNAPSE, a Twitter-based streaming threat monitor that generates a continuously updated summary of the threat landscape related to a monitored infrastructure. Its tweet-processing pipeline is composed of filtering, feature extraction, binary classification, an innovative clustering strategy, and generation of Indicators of Compromise (IoCs). A quantitative evaluation considering all tweets from 80 accounts over more than 8 months (over 195.000 tweets), shows that our approach timely and successfully finds the majority of security-related tweets concerning an example IT infrastructure (true positive rate above 90%), incorrectly selects a small number of tweets as relevant (false positive rate under 10%), and summarises the results to very few IoCs per day. A qualitative evaluation of the IoCs generated by SYNAPSE demonstrates their relevance (based on the CVSS score and the availability of patches or exploits), and timeliness (based on threat disclosure dates from NVD)

    Using qualia information to identify lexical semantic classes in an unsupervised clustering task

    Full text link
    Acquiring lexical information is a complex problem, typically approached by relying on a number of contexts to contribute information for classification. One of the first issues to address in this domain is the determination of such contexts. The work presented here proposes the use of automatically obtained FORMAL role descriptors as features used to draw nouns from the same lexical semantic class together in an unsupervised clustering task. We have dealt with three lexical semantic classes (HUMAN, LOCATION and EVENT) in English. The results obtained show that it is possible to discriminate between elements from different lexical semantic classes using only FORMAL role information, hence validating our initial hypothesis. Also, iterating our method accurately accounts for fine-grained distinctions within lexical classes, namely distinctions involving ambiguous expressions. Moreover, a filtering and bootstrapping strategy employed in extracting FORMAL role descriptors proved to minimize effects of sparse data and noise in our task.Comment: 10 pages, 5 tables. Also available in UPF institutional repository (http://hdl.handle.net/10230/20383
    corecore