2,348 research outputs found

    No NAT'd User left Behind: Fingerprinting Users behind NAT from NetFlow Records alone

    Full text link
    It is generally recognized that the traffic generated by an individual connected to a network acts as his biometric signature. Several tools exploit this fact to fingerprint and monitor users. Often, though, these tools assume to access the entire traffic, including IP addresses and payloads. This is not feasible on the grounds that both performance and privacy would be negatively affected. In reality, most ISPs convert user traffic into NetFlow records for a concise representation that does not include, for instance, any payloads. More importantly, large and distributed networks are usually NAT'd, thus a few IP addresses may be associated to thousands of users. We devised a new fingerprinting framework that overcomes these hurdles. Our system is able to analyze a huge amount of network traffic represented as NetFlows, with the intent to track people. It does so by accurately inferring when users are connected to the network and which IP addresses they are using, even though thousands of users are hidden behind NAT. Our prototype implementation was deployed and tested within an existing large metropolitan WiFi network serving about 200,000 users, with an average load of more than 1,000 users simultaneously connected behind 2 NAT'd IP addresses only. Our solution turned out to be very effective, with an accuracy greater than 90%. We also devised new tools and refined existing ones that may be applied to other contexts related to NetFlow analysis

    Design of Hybrid Network Anomalies Detection System (H-NADS) Using IP Gray Space Analysis

    Get PDF
    In Network Security, there is a major issue to secure the public or private network from abnormal users. It is because each network is made up of users, services and computers with a specific behavior that is also called as heterogeneous system. To detect abnormal users, anomaly detection system (ADS) is used. In this paper, we present a novel and hybrid Anomaly Detection System with the uses of IP gray space analysis and dominant scanning port identification heuristics used to detect various anomalous users with their potential behaviors. This methodology is the combination of both statistical and rule based anomaly detection which detects five types of anomalies with their three types of potential behaviors and generates respective alarm messages to GUI.Network Security, Anomaly Detection, Suspicious Behaviors Detection

    Discovering Patterns of Interest in IP Traffic Using Cliques in Bipartite Link Streams

    Full text link
    Studying IP traffic is crucial for many applications. We focus here on the detection of (structurally and temporally) dense sequences of interactions, that may indicate botnets or coordinated network scans. More precisely, we model a MAWI capture of IP traffic as a link streams, i.e. a sequence of interactions (t1,t2,u,v)(t_1 , t_2 , u, v) meaning that devices uu and vv exchanged packets from time t1t_1 to time t2t_2 . This traffic is captured on a single router and so has a bipartite structure: links occur only between nodes in two disjoint sets. We design a method for finding interesting bipartite cliques in such link streams, i.e. two sets of nodes and a time interval such that all nodes in the first set are linked to all nodes in the second set throughout the time interval. We then explore the bipartite cliques present in the considered trace. Comparison with the MAWILab classification of anomalous IP addresses shows that the found cliques succeed in detecting anomalous network activity

    Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data

    Get PDF
    Recent years have seen the rise of more sophisticated attacks including advanced persistent threats (APTs) which pose severe risks to organizations and governments by targeting confidential proprietary information. Additionally, new malware strains are appearing at a higher rate than ever before. Since many of these malware are designed to evade existing security products, traditional defenses deployed by most enterprises today, e.g., anti-virus, firewalls, intrusion detection systems, often fail at detecting infections at an early stage. We address the problem of detecting early-stage infection in an enterprise setting by proposing a new framework based on belief propagation inspired from graph theory. Belief propagation can be used either with "seeds" of compromised hosts or malicious domains (provided by the enterprise security operation center -- SOC) or without any seeds. In the latter case we develop a detector of C&C communication particularly tailored to enterprises which can detect a stealthy compromise of only a single host communicating with the C&C server. We demonstrate that our techniques perform well on detecting enterprise infections. We achieve high accuracy with low false detection and false negative rates on two months of anonymized DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of real-world web proxy logs collected at the border of a large enterprise. Through careful manual investigation in collaboration with the enterprise SOC, we show that our techniques identified hundreds of malicious domains overlooked by state-of-the-art security products
    corecore