20,965 research outputs found

    A Potentiality and Conceptuality Interpretation of Quantum Physics

    Full text link
    We elaborate on a new interpretation of quantum mechanics which we introduced recently. The main hypothesis of this new interpretation is that quantum particles are entities interacting with matter conceptually, which means that pieces of matter function as interfaces for the conceptual content carried by the quantum particles. We explain how our interpretation was inspired by our earlier analysis of non-locality as non-spatiality and a specific interpretation of quantum potentiality, which we illustrate by means of the example of two interconnected vessels of water. We show by means of this example that philosophical realism is not in contradiction with the recent findings with respect to Leggett's inequalities and their violations. We explain our recent work on using the quantum formalism to model human concepts and their combinations and how this has given rise to the foundational ideas of our new quantum interpretation. We analyze the equivalence of meaning in the realm of human concepts and coherence in the realm of quantum particles, and how the duality of abstract and concrete leads naturally to a Heisenberg uncertainty relation. We illustrate the role played by interference and entanglement and show how the new interpretation explains the problems related to identity and individuality in quantum mechanics. We put forward a possible scenario for the emergence of the reality of macroscopic objects.Comment: 20 pages, 1 figur

    Dynamic quantum clustering: a method for visual exploration of structures in data

    Full text link
    A given set of data-points in some feature space may be associated with a Schrodinger equation whose potential is determined by the data. This is known to lead to good clustering solutions. Here we extend this approach into a full-fledged dynamical scheme using a time-dependent Schrodinger equation. Moreover, we approximate this Hamiltonian formalism by a truncated calculation within a set of Gaussian wave functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition or feature filtering.Comment: 15 pages, 9 figure

    Cluster states in nuclei as representations of a U(n+1) group

    Full text link
    We propose a description of cluster states in nuclei in terms of representations of unitary algebras U(n+1), where n is the number of space degrees of freedom. Within this framework, a variety of situations including both vibrational and rotational spectra, soft and rigid configurations, identical and non-identical constituents can be described. As an example, we show how the method can be used to study alpha-clustering configurations in 12C with point group symmetry D(3h).Comment: 5 pages, 2 figures, Phys. Rev. C, in pres

    High posterior density ellipsoids of quantum states

    Full text link
    Regions of quantum states generalize the classical notion of error bars. High posterior density (HPD) credible regions are the most powerful of region estimators. However, they are intractably hard to construct in general. This paper reports on a numerical approximation to HPD regions for the purpose of testing a much more computationally and conceptually convenient class of regions: posterior covariance ellipsoids (PCEs). The PCEs are defined via the covariance matrix of the posterior probability distribution of states. Here it is shown that PCEs are near optimal for the example of Pauli measurements on multiple qubits. Moreover, the algorithm is capable of producing accurate PCE regions even when there is uncertainty in the model.Comment: TL;DR version: computationally feasible region estimator

    A Wave-Mechanical Approach to Cosmic Structure Formation

    Get PDF
    The dynamical equations describing the evolution of a self-gravitating fluid can be rewritten in the form of a Schrodinger equation coupled to a Poisson equation determining the gravitational potential. This wave-mechanical representation allows an approach to cosmological gravitational instability that has numerous advantages over standard fluid-based methods. We explore the usefulness of the Schrodinger approach by applying it to a number of simple examples of self-gravitating systems in the weakly non-linear regime. We show that consistent description of a cold self-gravitating fluid requires an extra "quantum pressure" term to be added to the usual Schrodinger equation and we give examples of the effect of this term on the development of gravitational instability. We also show how the simple wave equation can be modified by the addition of a non-linear term to incorporate the effects of gas pressure described by a polytropic equation-of-state.Comment: 9 pages, 2 figures. Minor changes. Accepted for publication in MNRA

    On the symmetry of the vacuum in theories with spontaneous symmetry breaking

    Full text link
    We review the usual account of the phenomena of spontaneous symmetry breaking (SSB), pointing out the common misunderstandings surrounding the issue, in particular within the context of quantum field theory. In fact, the common explanations one finds in this context, indicate that under certain conditions corresponding to the situation called SSB, the vacuum of the theory does not share the symmetries of the Lagrangian. We explain in detail why this statement is incorrect in general, and in what limited set of circumstances such situation could arise. We concentrate on the case of global symmetries, for which we found no satisfactory exposition in the existing literature, and briefly comment on the case of gauge symmetries where, although insufficiently publicized, accurate and complete descriptions exist. We briefly discuss the implications for the phenomenological manifestations usually attributed to the phenomena of spontaneous symmetry breaking, analyzing which might be affected by our analysis and which are not. In particular we describe the mass generation mechanism in a fully symmetric scheme (i.e., with a totally symmetric vacuum), and briefly discuss the implications of this analysis to the problem of formation of topological defects in the early universe

    Structure and singly occupied molecular orbital analysis of anionic tautomers of guanine

    Get PDF
    Recently we reported the discovery of adiabatically bound anions of guanine which might be involved in the processes of DNA damage by low-energy electrons and in charge transfer through DNA. These anions correspond to some tautomers that have been ignored thus far. They were identified using a hybrid quantum mechanical-combinatorial approach in which an energy-based screening was performed on the library of 499 tautomers with their relative energies calculated with quantum chemistry methods. In the current study we analyze the adiabatically bound anions of guanine in two aspects: 1) the geometries and excess electron distributions are analyzed and compared with anions of the most stable neutrals to identify the sources of stability; 2) the chemical space of guanine tautomers is explored to verify if these new tautomers are contained in a particular subspace of the tautomeric space. The first task involves the development of novel approaches – the quantum chemical data like electron density, orbital and information on its bonding/antibonding character are coded into holograms and analyzed using chemoinformatics techniques. The second task is completed using substructure analysis and clustering techniques performed on molecules represented by 2D fingerprints. The major conclusion is that the high stability of adiabatically bound anions originates from the bonding character of the pi orbital occupied by the excess electron. This compensates for the antibonding character that usually causes significant buckling of the ring. Also the excess electron is more homogenously distributed over both rings than in the case of anions of the most stable neutral species. In terms of 2D substructure, the most stable anionic tautomers generally have additional hydrogen atoms at C8 and/or C2 and they don’t have hydrogen atoms attached to C4, C5 and C6. They also form an “island of stability” in the tautomeric space of guanine

    Bifurcation in Rotational Spectra of Nonlinear AB2_2 Molecules

    Full text link
    A classical microscopic theory of rovibrational motion at high angular momenta in symmetrical non-linear molecules AB2_2 is derived within the framework of small oscillations near the stationary states of a rotating molecule. The full-dimensional analysis including stretching vibrations has confirmed the existence of the bifurcation predicted previously by means of the rigid-bender model. The formation of fourfold energy clusters has already been experimentally verified for H2_2Se and it has been demonstrated in fully-dimensional quantum mechanical calculations using the MORBID computer program. We show in the present work that apart from the level clustering, the bifurcation produces physically important effects including molecular symmetry-breaking and a transition from the normal mode to the local mode limit for the stretching vibrations due to rovibrational interaction. The application of the present theory with realistic molecular potentials to the H2_2Te, H2_2Se and H2_2S hydrides results in predictions of the bifurcation points very close to those calculated previously. However for the lighter H2_2O molecule we find that the bifurcation occurs at higher values of the total angular momentum than obtained in previous estimations. The present work shows it to be very unlikely that the bifurcation in H2_2O will lead to clustering of energy levels. This result is in agreement with recent variational calculations.Comment: latex, 19 pages including 2 figures provided as *.uu fil

    Community Detection in Quantum Complex Networks

    Full text link
    Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, in static or interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems---a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure.Comment: 16 pages, 4 figures, 1 tabl
    corecore