1,269 research outputs found

    Marble Slabs Classification System Based on Image Processing (Ark Marble Mine in Birjand)

    Get PDF
    Marble is one of the semi-precious stones that has been used in decorating building façade and making decorative things. This stone is present in the nature in the form of rock or layered stone. Examining the kind of stone, extent of impurity and different streaks in white marble is a widely confronted subject by those who are involved in this industry. Obtaining the extent of impurity of white marble using methods of detecting and analyzing material is expensive and time-consuming. In this research carried out on while marbles of Arc Mine in Birjand, it has been attempted to present very fast method using Image Processing Techniques so that while preserving identity and appearance of stone and without any damage to it, we compute the impurity level and different streaks on white marble surface. The proposed method includes two stages; in the first stage applying image processing functions, it is attempted to segment the present impurities and streaks on marble surface from the stone background and in the second stage, the area of these impurities and streaks is computed. Results obtained in this paper (97.8%) in comparison with other researches and experimental methods indicate acceptability of this algorithm

    Archaeometric Classification of Scattered Marble Fragments to Help the Reconstruction of Statues

    Get PDF
    A multi-technique approach combining petrographic, cathodoluminescence, and stable isotope analyses is commonly used in provenance studies of archaeological marbles. In the present paper, this characterization approach transcends provenance, and it is applied to the reconstruction of fragmented sculptures. The potential of this novel application of archaeometric measurements is illustrated with a case study consisting in 16 scattered marble fragments retrieved from a Roman villa (Els Munts) near Tarraco (presently Northeastern Spain). The samples were grouped taking into account their similarity in quantified parameters such as the cathodoluminescence color clusters and the stable carbon and oxygen isotopic ratios. The results permitted classification of the fragments into three groups corresponding to three different statues depicting Antinous (7 fragments), Minerva goddess (4 fragments), and an undetermined character (3 fragments). Two other fragments could not be ascribed to any particular statue. The archaeometric grouping provides arguments that can be used to confirm or refute archaeological hypotheses of statue reconstructions. © 2022 by the authors

    A Survey of Machine Learning Techniques for Behavioral-Based Biometric User Authentication

    Get PDF
    Authentication is a way to enable an individual to be uniquely identified usually based on passwords and personal identification number (PIN). The main problems of such authentication techniques are the unwillingness of the users to remember long and challenging combinations of numbers, letters, and symbols that can be lost, forged, stolen, or forgotten. In this paper, we investigate the current advances in the use of behavioral-based biometrics for user authentication. The application of behavioral-based biometric authentication basically contains three major modules, namely, data capture, feature extraction, and classifier. This application is focusing on extracting the behavioral features related to the user and using these features for authentication measure. The objective is to determine the classifier techniques that mostly are used for data analysis during authentication process. From the comparison, we anticipate to discover the gap for improving the performance of behavioral-based biometric authentication. Additionally, we highlight the set of classifier techniques that are best performing for behavioral-based biometric authentication

    Local Access to Huge Random Objects Through Partial Sampling

    Get PDF
    © Amartya Shankha Biswas, Ronitt Rubinfeld, and Anak Yodpinyanee. Consider an algorithm performing a computation on a huge random object (for example a random graph or a “long” random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally “on-the-fly” (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-RĂ©nyi G(n, p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries in the (sparse and directed) Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer each query using O(poly(log n)) time, random bits, and additional space. Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (balanced random walks on the integer line that are always non-negative). Here, we support Height queries to find the location of the walk, and First-Return queries to find the time when the walk returns to a specified location. This in turn can be used to implement Next-Neighbor queries on random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions (the Dyck language). Finally, we introduce two features to define a new model that: (1) allows multiple independent (and even simultaneous) instantiations of the same implementation, to be consistent with each other without the need for communication, (2) allows us to generate a richer class of random objects that do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an input graph G with maximum degree ∆. This is in contrast to prior work in the area, where the relevant random objects are defined as a distribution with O(1) parameters (for example, n and p in the G(n, p) model). The distribution over valid colorings is instead specified via a “huge” input (the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead, our implementation accesses G through local neighborhood probes, and is able to answer queries to the color of any given vertex in sub-linear time for q ≄ 9∆, in a manner that is consistent with a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can maintain consistency with non-communicating copies of itself

    Individual differences in information integration studies of children’s judgment/decision-making: Combining group with single-subject design via cluster analysis

    Get PDF
    Our work uses experimental methods to test children’s judgment/decision-making (JDM). Experimental work often focuses on task and process analyses at the group level, with individual differences treated as error variability. Here, we describe how to assess/interpret individual differences within experiments using single-subject design. Traditionally, single-subject design appears in single case studies, with issues of generalizability arising. Our approach, in contrast, involves groups of standard size, analyzed at the group and individual subject level. We then group individuals with similar patterns, for conclusions about the existence and contributions of systematic individual differences to development. Our examples here use Information Integration Theory (IIT). Our general perspective, however, could be useful for other experimental paradigms as well
    • 

    corecore