2,442 research outputs found

    A Wavelet-Based Approach to Pattern Discovery in Melodies

    Get PDF

    Convolutional Methods for Music Analysis

    Get PDF

    Algorithmic categorisation in formal music analysis

    Get PDF

    Retentional Syntagmatic Network, and its Use in Motivic Analysis of Maqam Improvisation

    Get PDF
    In this paper is defined a concept of Retentional Syntagmatic Network (RSN), which models the connectivity between temporally closed notes. The RSN formalizes the Schenkerian notion of pitch prolongation as a concept of syntagmatic retention, whose characteristics are dependent on the underlying modal context. This framework enables to formalize the syntagmatic role of ornamentation, and allows an automation of motivic analysis that takes into account melodic transformations. The model is applied to the analysis of a maqam improvisation. The RSN is also proposed as a way to surpass strict hierarchical segmentation models, which in our view cannot sufficiently describe the richness of musical structure. Instead of separability, we propose to focus instead on the connectivity between notes, modeled with the help of RSNs

    Towards a general computational theory of musical structure

    Get PDF
    The General Computational Theory of Musical Structure (GCTMS) is a theory that may be employed to obtain a structural description (or set of descriptions) of a musical surface. This theory is based on general cognitive and logical principles, is independent of any specific musical style or idiom, and can be applied to any musical surface. The musical work is presented to GCTMS as a sequence of discrete symbolically represented events (e.g. notes) without higher-level structural elements (e.g. articulation marks, timesignature etc.)- although such information may be used to guide the analytic process. The aim of the application of the theory is to reach a structural description of the musical work that may be considered as 'plausible' or 'permissible' by a human music analyst. As styledependent knowledge is not embodied in the general theory, highly sophisticated analyses (similar to those an expert analyst may provide) are not expected. The theory gives, however, higher rating to descriptions that may be considered more reasonable or acceptable by human analysts and lower to descriptions that are less plausible

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Comparison Structure Analysis

    Get PDF
    This study presents an automatic, computer-aided analytical method called Comparison Structure Analysis (CSA), which can be applied to different dimensions of music. The aim of CSA is first and foremost practical: to produce dynamic and understandable representations of musical properties by evaluating the prevalence of a chosen musical data structure through a musical piece. Such a comparison structure may refer to a mathematical vector, a set, a matrix or another type of data structure and even a combination of data structures. CSA depends on an abstract systematic segmentation that allows for a statistical or mathematical survey of the data. To choose a comparison structure is to tune the apparatus to be sensitive to an exclusive set of musical properties. CSA settles somewhere between traditional music analysis and computer aided music information retrieval (MIR). Theoretically defined musical entities, such as pitch-class sets, set-classes and particular rhythm patterns are detected in compositions using pattern extraction and pattern comparison algorithms that are typical within the field of MIR. In principle, the idea of comparison structure analysis can be applied to any time-series type data and, in the music analytical context, to polyphonic as well as homophonic music. Tonal trends, set-class similarities, invertible counterpoints, voice-leading similarities, short-term modulations, rhythmic similarities and multiparametric changes in musical texture were studied. Since CSA allows for a highly accurate classification of compositions, its methods may be applicable to symbolic music information retrieval as well. The strength of CSA relies especially on the possibility to make comparisons between the observations concerning different musical parameters and to combine it with statistical and perhaps other music analytical methods. The results of CSA are dependent on the competence of the similarity measure. New similarity measures for tonal stability, rhythmic and set-class similarity measurements were proposed. The most advanced results were attained by employing the automated function generation – comparable with the so-called genetic programming – to search for an optimal model for set-class similarity measurements. However, the results of CSA seem to agree strongly, independent of the type of similarity function employed in the analysis.Tämä tutkimus esittelee uuden musiikkianalyyttisen metodin, vertailurakenneanalyysin (VRA, engl. Comparison Structure Analysis, CSA), jonka avulla voidaan analysoida musiikin eri ulottuvuuksia, kuten harmoniaa tai rytmiä. VRA:n ideana on mitata tietyn ennalta valitun musiikillisen rakenteen, vaikkapa jonkin sävelasteikon, vallitsevuutta musiikin kullakin ajanhetkellä. Tämä edellyttää kolmea asiaa. Ensiksi, intuitiivisesti tai muulla tavoin valittu musiikillinen piirre, jota tässä kutsutaan yleisesti vertailurakenteeksi, on esitettävä matemaattisessa muodossa, esimerkiksi matemaattisen avaruuden vektorina. Vertailurakenne voidaan muodostaa myös useiden eri tyyppisten, musiikin eri ulottuvuuksiin liittyvien tietorakenteiden yhdistelmänä. Toiseksi, analysoitava musiikillinen data, esimerkiksi musiikista muodostetut sävelluokat (C:stä H:hon), on pystyttävä ryhmittelemään vastaavantyyppisiksi objekteiksi. Lisäksi tarvitaan vielä matemaattinen funktio, joka kykenee mittaamaan valitun vertailurakenteen ja musiikista ryhmiteltyjen segmenttien välistä samankaltaisuutta tai vastaavasti, etäisyyttä. Toisin sanoen, VRA:ssa verrataan valittua vertailurakennetta, esimerkiksi diatonista asteikkoa, kaikkiin musiikista segmentoituihin vastaavantyyppisiin objekteihin. Mittaustulokset saadaan lukuarvoina yleensä välillä 0–1, jossa arvo 1 voi – mittausfunktion luonteesta riippuen – tarkoittaa joko täydellistä samankaltaisuutta tai suurinta mahdollista etäisyyttä. Havainnollisena analyysin kohteena voisimme kuvitella länsimaista taidemusiikkia edustavan sävellyksen, jossa siirrytään keskiaikaisesta diatonisesta musiikista historiallisesti ja tyylillisesti kohti 1900-luvun atonaalista musiikkia. Mikäli tässä tapauksessa vertailurakenteena käytettäisiin mainittua diatonista asteikkoa, VRA paljastaisi musiikissa korvinkin havaittavan ei-diatonisoitumisen. Tulosten esittämisellä esimerkiksi ajallisia muutoksia esittävin mittauskäyrin tai luokittelua havainnollistavin keskiarvopistein on merkittävä asema analyysissa. VRA sijoittuu perinteisen musiikkianalyysin ja tietokonetta hyödyntävien musiikin sisältöhakuun (music information retrieval, MIR) keskittyvien tekniikoiden välimaastoon. Sen avulla voidaan tunnistaa ja mitata perinteiselle musiikkianalyysille tyypillisia kohteita kuten karakteristisia rytmejä, sävelluokkajoukkoja, joukkoluokkia, tonaliteetteja ja käänteiskontrapunkteja soveltamalla MIR:lle tyypillisiä segmentointi- ja vertailualgoritmeja. Vertailurakenneanalyysin suurimmaksi haasteeksi on osoittautunut musiikillisten segmenttien muodostamiseen tarvittavan automaattisen algoritmin kehittäminen. Voidaan näet osoittaa, että sama musiikillinen data on useimmiten mahdollista segmentoida – musiikillisesti mielekkäästi – monella eri tavalla. Silloin, kun kyse on harmoniaan liittyvistä objekteista, tehtävä on erityisen haastava, sillä tällöin musiikin säveltapahtumia joudutaan tarkastelemaan niin ajallisessa kuin vertikaalisessakin suunnassa. Musiikin tonaalisuudessa ja sävelluokkasisällössä tapahtuvien muutosten analysoimista varten tässä tutkimuksessa kehitettiinkin kaksi erilaista segmentointialgoritmia, jotka muodostavat musiikillisesta datasta osin limittäisiä sävelluokkajoukkoja. Metodien erilaisuudesta huolimatta ‘herkkyysanalyysillä’ voitiin osoittaa, että molemmat menetelmät ovat hyvin vähän riippuvaisia syötetyn datan luonteesta; niiden avulla saadut tulokset olivat hyvin samankaltaisia. VRA:lla saatuja tuloksia voidaan edelleen tarkastella myös tilastollisen merkitsevyyden näkökulmasta. Koska VRA:lla pystytään havaitsemaan musiikin eri dimensioissa tapahtuvia muutoksia, tämän johdannaisena voidaan tutkia myös sitä, missä määrin jokin sävellys on tyylillisesti koherentti verrattuna johonkin toiseen sävellykseen eli kummassa muutokset ovat tarkasteltavan ominaisuuden suhteen keskimäärin pienemmät ja kummassa suuremmat. Lisäksi VRA tarjoaa mahdollisuuden musiikin luokitteluun saatujen mittausarvojen perusteella: mitä enemmän musiikillisia parametrejä ja useampia vertailurakenteita analyysissa hyödynnetään, sitä tarkemmin sävellyksiä voidaan luokitella. Niinpä VRA:n keinoja voidaan tulevaisuudessa kuvitella käytettävän myös musiikin sisältöhakuun (MIR). Tällaisessa tapauksessa vertailurakenne tai -rakenteet voitaisiin ‘laskea’ musiikillisesta datasta suoraan jollakin matemaattisella menetelmällä – kuten pääkomponenttianalyysilla – etukäteen suoritettavan intuitiivisen valinnan sijaan. Tutkimuksen tuloksiin lukeutuvat myös useat VRA:n tarpeisiin kehitetyt samankaltaisuusmittarit. Näistä mielenkiintoisin lienee sävelluokkajoukkojen välisen samankaltaisuuden mittaamiseen kehitetty funktio expcos, joka löytyi ns. geneettisen ohjelmoinnin avulla. Mainitussa kokeessa tietokoneella generoitiin arviolta n. 800 000 samankaltaisuusmittaria, joiden tuottamia tuloksia verrattiin ihmisten tekemiin samankaltaisuusarvioihin. Niistä n. 450 osoittautui käyttökelpoiseksi. Sensitiivisyysanalyysi osoitti, että em. funktio paitsi korreloi voimakkaammin empiiristen samankaltaisuusarvioiden kanssa, on VRA:ssa myös robustimpi kuin kenties tunnetuin samaan tarkoitukseen kehitetty funktio, REL (David Lewin, 1980). Käytännössä tällä ei ole kuitenkaan merkitystä: REL toimii VRA:ssa aivan yhtä hyvin kuin expcos. VRA:n avulla musiikkia tarkastellaan ikään kuin jonkinlaisena tilastollisena sävelmassana, eikä se niin muodoin kykene kertomaan siitä, miten analysoitava musiikki on yksityiskohtien tasolla sävelletty; perinteiset musiikkianalyysimenetelmät pureutuvat tehtävään paremmin. Toisaalta, tämä ei ole VRA:n tarkoituskaan vaan päinvastoin, sen avulla sävellysten muodosta pystytään muodostamaan laajoja yleiskuvia, jotka ovat useimmiten havaintokykymme ulottumattomissa. Vertailurakenneanalyysi on hyvin joustava menetelmä. Mikään ei nimittäin estä tarkastelemasta musiikin eri dimensioista saatuja mittaustuloksia keskenään ja näin etsimästä niiden välisiä yhteyksiä. Lisäksi menetelmän periaatteita voitaisiin kuvitella käytettävän yleisemminkin, esimerkiksi linnunlaulun muodon tarkasteluun tai vaikkapa jokipuron solinasta löytyvien toistuvien jaksojen havainnointiin. VRA:n periaatteita voidaankin soveltaa mihin tahansa numeerisesti diskreettiin muotoon saatettuun aikasarjaan.Siirretty Doriast

    Dynamical and topological tools for (modern) music analysis

    Get PDF
    Is it possible to represent the horizontal motions of the melodic strands of a contrapuntal composition, or the main ideas of a jazz standard as mathematical entities? In this work, we suggest a collection of novel models for the representation of music that are endowed with two main features. First, they originate from a topological and geometrical inspiration; second, their low dimensionality allows to build simple and informative visualisations. Here, we tackle the problem of music representation following three non-orthogonal directions. We suggest a formalisation of the concept of voice leading (the assignment of an instrument to each voice in a sequence of chords) suggesting a horizontal viewpoint on music, constituted by the simultaneous motions of superposed melodies. This formalisation naturally leads to the interpretation of counterpoint as a multivariate time series of partial permutation matrices, whose observations are characterised by a degree of complexity. After providing both a static and a dynamic representation of counterpoint, voice leadings are reinterpreted as a special class of partial singular braids (paths in the Euclidean space), and their main features are visualised as geometric configurations of collections of 3-dimensional strands. Thereafter, we neglect this time-related information, in order to reduce the problem to the study of vertical musical entities. The model we propose is derived from a topological interpretation of the Tonnetz (a graph commonly used in computational musicology) and the deformation of its vertices induced by a harmonic and a consonance-oriented function, respectively. The 3-dimensional shapes derived from these deformations are classified using the formalism of persistent homology. This powerful topological technique allows to compute a fingerprint of a shape, that reflects its persistent geometrical and topological properties. Furthermore, it is possible to compute a distance between these fingerprints and hence study their hierarchical organisation. This particular feature allows us to tackle the problem of automatic classification of music in an innovative way. Thus, this novel representation of music is evaluated on a collection of heterogenous musical datasets. Finally, a combination of the two aforementioned approaches is proposed. A model at the crossroad between the signal and symbolic analysis of music uses multiple sequences alignment to provide an encompassing, novel viewpoint on the musical inspiration transfer among compositions belonging to different artists, genres and time. To conclude, we shall represent music as a time series of topological fingerprints, whose metric nature allows to compare pairs of time-varying shapes in both topological and in musical terms. In particular the dissimilarity scores computed by aligning such sequences shall be applied both to the analysis and classification of music
    corecore