154,012 research outputs found

    Silhouette + Attraction: A Simple and Effective Method for Text Clustering

    Get PDF
    [EN] This article presents silhouette attraction (Sil Att), a simple and effective method for text clustering, which is based on two main concepts: the silhouette coefficient and the idea of attraction. The combination of both principles allows us to obtain a general technique that can be used either as a boosting method, which improves results of other clustering algorithms, or as an independent clustering algorithm. The experimental work shows that Sil Att is able to obtain high-quality results on text corpora with very different characteristics. Furthermore, its stable performance on all the considered corpora is indicative that it is a very robust method. This is a very interesting positive aspect of Sil Att with respect to the other algorithms used in the experiments, whose performances heavily depend on specific characteristics of the corpora being considered.This research work has been partially funded by UNSL, CONICET (Argentina), DIANA-APPLICATIONS-Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) research project, and the WIQ-EI IRSES project (grant no. 269180) within the FP 7 Marie Curie People Framework on Web Information Quality Evaluation Initiative. The work of the third author was done also in the framework of the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems.Errecalde, M.; Cagnina, L.; Rosso, P. (2015). Silhouette + Attraction: A Simple and Effective Method for Text Clustering. Natural Language Engineering. 1-40. https://doi.org/10.1017/S1351324915000273S140Zhao, Y., & Karypis, G. (2004). Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering. Machine Learning, 55(3), 311-331. doi:10.1023/b:mach.0000027785.44527.d6Tu, L., & Chen, Y. (2009). Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery from Data, 3(3), 1-27. doi:10.1145/1552303.1552305Yang, T., Jin, R., Chi, Y., & Zhu, S. (2009). Combining link and content for community detection. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’09. doi:10.1145/1557019.1557120Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical Clustering Algorithms for Document Datasets. Data Mining and Knowledge Discovery, 10(2), 141-168. doi:10.1007/s10618-005-0361-3Kaufman, L., & Rousseeuw, P. J. (Eds.). (1990). Finding Groups in Data. Wiley Series in Probability and Statistics. doi:10.1002/9780470316801Karypis, G., Eui-Hong Han, & Kumar, V. (1999). Chameleon: hierarchical clustering using dynamic modeling. Computer, 32(8), 68-75. doi:10.1109/2.781637Cagnina, L., Errecalde, M., Ingaramo, D., & Rosso, P. (2014). An efficient Particle Swarm Optimization approach to cluster short texts. Information Sciences, 265, 36-49. doi:10.1016/j.ins.2013.12.010He, H., Chen, B., Xu, W., & Guo, J. (2007). Short Text Feature Extraction and Clustering for Web Topic Mining. Third International Conference on Semantics, Knowledge and Grid (SKG 2007). doi:10.1109/skg.2007.76Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. doi:10.2307/1412159Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. doi:10.1016/0377-0427(87)90125-7Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. doi:10.1017/cbo9780511809071Qi, G.-J., Aggarwal, C. C., & Huang, T. (2012). Community Detection with Edge Content in Social Media Networks. 2012 IEEE 28th International Conference on Data Engineering. doi:10.1109/icde.2012.77Daxin Jiang, Jian Pei, & Aidong Zhang. (s. f.). DHC: a density-based hierarchical clustering method for time series gene expression data. Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings. doi:10.1109/bibe.2003.1188978Charikar, M., Chekuri, C., Feder, T., & Motwani, R. (2004). Incremental Clustering and Dynamic Information Retrieval. SIAM Journal on Computing, 33(6), 1417-1440. doi:10.1137/s0097539702418498Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003-1008. doi:10.1016/0031-3203(91)90097-oAranganayagi, S., & Thangavel, K. (2007). Clustering Categorical Data Using Silhouette Coefficient as a Relocating Measure. International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). doi:10.1109/iccima.2007.328Makagonov, P., Alexandrov, M., & Gelbukh, A. (2004). Clustering Abstracts Instead of Full Texts. Lecture Notes in Computer Science, 129-135. doi:10.1007/978-3-540-30120-2_17Jing L. 2005. Survey of text clustering. Technical report. Department of Mathematics. The University of Hong Kong, Hong Kong, China.Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.xHearst, M. A. (2006). Clustering versus faceted categories for information exploration. Communications of the ACM, 49(4), 59. doi:10.1145/1121949.1121983Alexandrov, M., Gelbukh, A., & Rosso, P. (2005). An Approach to Clustering Abstracts. Lecture Notes in Computer Science, 275-285. doi:10.1007/11428817_25Dos Santos, J. B., Heuser, C. A., Moreira, V. P., & Wives, L. K. (2011). Automatic threshold estimation for data matching applications. Information Sciences, 181(13), 2685-2699. doi:10.1016/j.ins.2010.05.029Hasan, M. A., Chaoji, V., Salem, S., & Zaki, M. J. (2009). Robust partitional clustering by outlier and density insensitive seeding. Pattern Recognition Letters, 30(11), 994-1002. doi:10.1016/j.patrec.2009.04.013Dunn†, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics, 4(1), 95-104. doi:10.1080/01969727408546059Carullo, M., Binaghi, E., & Gallo, I. (2009). An online document clustering technique for short web contents. Pattern Recognition Letters, 30(10), 870-876. doi:10.1016/j.patrec.2009.04.001Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441Bezdek, J. C., & Pal, N. R. (s. f.). Cluster validation with generalized Dunn’s indices. Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems. doi:10.1109/annes.1995.499469Brun, M., Sima, C., Hua, J., Lowey, J., Carroll, B., Suh, E., & Dougherty, E. R. (2007). Model-based evaluation of clustering validation measures. Pattern Recognition, 40(3), 807-824. doi:10.1016/j.patcog.2006.06.026Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224-227. doi:10.1109/tpami.1979.4766909Pinto, D., & Rosso, P. (s. f.). On the Relative Hardness of Clustering Corpora. Lecture Notes in Computer Science, 155-161. doi:10.1007/978-3-540-74628-7_22Pons-Porrata, A., Berlanga-Llavori, R., & Ruiz-Shulcloper, J. (2007). Topic discovery based on text mining techniques. Information Processing & Management, 43(3), 752-768. doi:10.1016/j.ipm.2006.06.001Pinto, D., Benedí, J.-M., & Rosso, P. (2007). Clustering Narrow-Domain Short Texts by Using the Kullback-Leibler Distance. Lecture Notes in Computer Science, 611-622. doi:10.1007/978-3-540-70939-8_5

    Computational Approaches to Measuring the Similarity of Short Contexts : A Review of Applications and Methods

    Full text link
    Measuring the similarity of short written contexts is a fundamental problem in Natural Language Processing. This article provides a unifying framework by which short context problems can be categorized both by their intended application and proposed solution. The goal is to show that various problems and methodologies that appear quite different on the surface are in fact very closely related. The axes by which these categorizations are made include the format of the contexts (headed versus headless), the way in which the contexts are to be measured (first-order versus second-order similarity), and the information used to represent the features in the contexts (micro versus macro views). The unifying thread that binds together many short context applications and methods is the fact that similarity decisions must be made between contexts that share few (if any) words in common.Comment: 23 page

    Extracting News Events from Microblogs

    Full text link
    Twitter stream has become a large source of information for many people, but the magnitude of tweets and the noisy nature of its content have made harvesting the knowledge from Twitter a challenging task for researchers for a long time. Aiming at overcoming some of the main challenges of extracting the hidden information from tweet streams, this work proposes a new approach for real-time detection of news events from the Twitter stream. We divide our approach into three steps. The first step is to use a neural network or deep learning to detect news-relevant tweets from the stream. The second step is to apply a novel streaming data clustering algorithm to the detected news tweets to form news events. The third and final step is to rank the detected events based on the size of the event clusters and growth speed of the tweet frequencies. We evaluate the proposed system on a large, publicly available corpus of annotated news events from Twitter. As part of the evaluation, we compare our approach with a related state-of-the-art solution. Overall, our experiments and user-based evaluation show that our approach on detecting current (real) news events delivers a state-of-the-art performance
    • …
    corecore