1,789 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Data Stream Clustering: Challenges and Issues

    Full text link
    Very large databases are required to store massive amounts of data that are continuously inserted and queried. Analyzing huge data sets and extracting valuable pattern in many applications are interesting for researchers. We can identify two main groups of techniques for huge data bases mining. One group refers to streaming data and applies mining techniques whereas second group attempts to solve this problem directly with efficient algorithms. Recently many researchers have focused on data stream as an efficient strategy against huge data base mining instead of mining on entire data base. The main problem in data stream mining means evolving data is more difficult to detect in this techniques therefore unsupervised methods should be applied. However, clustering techniques can lead us to discover hidden information. In this survey, we try to clarify: first, the different problem definitions related to data stream clustering in general; second, the specific difficulties encountered in this field of research; third, the varying assumptions, heuristics, and intuitions forming the basis of different approaches; and how several prominent solutions tackle different problems. Index Terms- Data Stream, Clustering, K-Means, Concept driftComment: IMECS201

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    A framework for clustering and adaptive topic tracking on evolving text and social media data streams.

    Get PDF
    Recent advances and widespread usage of online web services and social media platforms, coupled with ubiquitous low cost devices, mobile technologies, and increasing capacity of lower cost storage, has led to a proliferation of Big data, ranging from, news, e-commerce clickstreams, and online business transactions to continuous event logs and social media expressions. These large amounts of online data, often referred to as data streams, because they get generated at extremely high throughputs or velocity, can make conventional and classical data analytics methodologies obsolete. For these reasons, the issues of management and analysis of data streams have been researched extensively in recent years. The special case of social media Big Data brings additional challenges, particularly because of the unstructured nature of the data, specifically free text. One classical approach to mine text data has been Topic Modeling. Topic Models are statistical models that can be used for discovering the abstract ``topics\u27\u27 that may occur in a corpus of documents. Topic models have emerged as a powerful technique in machine learning and data science, providing a great balance between simplicity and complexity. They also provide sophisticated insight without the need for real natural language understanding. However they have not been designed to cope with the type of text data that is abundant on social media platforms, but rather for traditional medium size corpora consisting of longer documents, adhering to a specific language and typically spanning a stable set of topics. Unlike traditional document corpora, social media messages tend to be very short, sparse, noisy, and do not adhere to a standard vocabulary, linguistic patterns, or stable topic distributions. They are also generated at high velocity that impose high demands on topic modeling; and their evolving or dynamic nature, makes any set of results from topic modeling quickly become stale in the face of changes in the textual content and topics discussed within social media streams. In this dissertation, we propose an integrated topic modeling framework built on top of an existing stream-clustering framework called Stream-Dashboard, which can extract, isolate, and track topics over any given time period. In this new framework, Stream Dashboard first clusters the data stream points into homogeneous groups. Then data from each group is ushered to the topic modeling framework which extracts finer topics from the group. The proposed framework tracks the evolution of the clusters over time to detect milestones corresponding to changes in topic evolution, and to trigger an adaptation of the learned groups and topics at each milestone. The proposed approach to topic modeling is different from a generic Topic Modeling approach because it works in a compartmentalized fashion, where the input document stream is split into distinct compartments, and Topic Modeling is applied on each compartment separately. Furthermore, we propose extensions to existing topic modeling and stream clustering methods, including: an adaptive query reformulation approach to help focus on the topic discovery with time; a topic modeling extension with adaptive hyper-parameter and with infinite vocabulary; an adaptive stream clustering algorithm incorporating the automated estimation of dynamic, cluster-specific temporal scales for adaptive forgetting to help facilitate clustering in a fast evolving data stream. Our experimental results show that the proposed adaptive forgetting clustering algorithm can mine better quality clusters; that our proposed compartmentalized framework is able to mine topics of better quality compared to competitive baselines; and that the proposed framework can automatically adapt to focus on changing topics using the proposed query reformulation strategy
    • …
    corecore