21,969 research outputs found

    An Automatic Statistical Segmentation Algorithm for Extraction of Fire and Smoke Regions

    Get PDF
    Estimation of the extent and spread of wildland fires is an important application of high spatial resolution multispectral images. This work addresses a fuzzy segmentation algorithm to map fire extent, active fire front, hot burn scar, and smoke regions based on a statistical model. The fuzzy results are useful data sources for integrated fire behavior and propagation models built using Dynamic Data Driven Applications Systems (DDDAS) concepts that use data assimilation techniques which require error estimates or probabilities for the data parameters. The Hidden Markov Random Field (HMRF) model has been used widely in image segmentation, but it is assumed that each pixel has a particular class label belonging to a prescribed finite set. The mixed pixel problem can be addressed by modeling the fuzzy membership process as a continuous Multivariate Gaussian Markov Random Field. Techniques for estimating the class membership and model parameters are discussed. Experimental results obtained by applying this technique to two Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images show that the proposed methodology is robust with regard to noise and variation in fire characteristics as well as background. The segmentation results of our algorithm are compared with the results of a K-means algorithm, an Expectation Maximization (EM) algorithm (which is very similar to the Fuzzy C-Means Clustering algorithm with entropy regularization), and an MRF-MAP algorithm. Our fuzzy algorithm achieves more consistent segmentation results than the comparison algorithms for these test images with the added advantage of simultaneously providing a proportion or error map needed for the data assimilation problem

    Fuzzy Jets

    Get PDF
    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities

    A Survey on Soft Subspace Clustering

    Full text link
    Subspace clustering (SC) is a promising clustering technology to identify clusters based on their associations with subspaces in high dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been extensively studied and well accepted by the scientific community, SSC algorithms are relatively new but gaining more attention in recent years due to better adaptability. In the paper, a comprehensive survey on existing SSC algorithms and the recent development are presented. The SSC algorithms are classified systematically into three main categories, namely, conventional SSC (CSSC), independent SSC (ISSC) and extended SSC (XSSC). The characteristics of these algorithms are highlighted and the potential future development of SSC is also discussed.Comment: This paper has been published in Information Sciences Journal in 201

    Biclustering models for two-mode ordinal data

    Get PDF
    The work in this paper introduces finite mixture models that can be used to simul- taneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets

    Possibilistic and fuzzy clustering methods for robust analysis of non-precise data

    Get PDF
    This work focuses on robust clustering of data affected by imprecision. The imprecision is managed in terms of fuzzy sets. The clustering process is based on the fuzzy and possibilistic approaches. In both approaches the observations are assigned to the clusters by means of membership degrees. In fuzzy clustering the membership degrees express the degrees of sharing of the observations to the clusters. In contrast, in possibilistic clustering the membership degrees are degrees of typicality. These two sources of information are complementary because the former helps to discover the best fuzzy partition of the observations while the latter reflects how well the observations are described by the centroids and, therefore, is helpful to identify outliers. First, a fully possibilistic k-means clustering procedure is suggested. Then, in order to exploit the benefits of both the approaches, a joint possibilistic and fuzzy clustering method for fuzzy data is proposed. A selection procedure for choosing the parameters of the new clustering method is introduced. The effectiveness of the proposal is investigated by means of simulated and real-life data

    Relational visual cluster validity

    Get PDF
    The assessment of cluster validity plays a very important role in cluster analysis. Most commonly used cluster validity methods are based on statistical hypothesis testing or finding the best clustering scheme by computing a number of different cluster validity indices. A number of visual methods of cluster validity have been produced to display directly the validity of clusters by mapping data into two- or three-dimensional space. However, these methods may lose too much information to correctly estimate the results of clustering algorithms. Although the visual cluster validity (VCV) method of Hathaway and Bezdek can successfully solve this problem, it can only be applied for object data, i.e. feature measurements. There are very few validity methods that can be used to analyze the validity of data where only a similarity or dissimilarity relation exists – relational data. To tackle this problem, this paper presents a relational visual cluster validity (RVCV) method to assess the validity of clustering relational data. This is done by combining the results of the non-Euclidean relational fuzzy c-means (NERFCM) algorithm with a modification of the VCV method to produce a visual representation of cluster validity. RVCV can cluster complete and incomplete relational data and adds to the visual cluster validity theory. Numeric examples using synthetic and real data are presente
    corecore