14,534 research outputs found

    Action-space clustering of tidal streams to infer the Galactic potential

    Get PDF
    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires full three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like data in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the true values of the potential parameters. The precision depends on the observational errors and the number of streams in the sample; using KIII giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20-40%. Recovery of the scale radius is precise to 25%, and is biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). About 15 streams, with at least 100 stars per stream, are needed to obtain upper and lower bounds on the enclosed mass and scale radius when observational errors are taken into account; 20-25 streams are required to stabilize the size of the confidence interval. If radial velocities are provided for stars out to 100 kpc (10 scale radii), all parameters can be determined with 10% accuracy and 20% precision (1.3% accuracy in the case of the enclosed mass), underlining the need for ground-based spectroscopic follow-up to complete the radial velocity catalog for faint halo stars observed by Gaia.Comment: Accepted versio

    Group finding in the stellar halo using M-giants in 2MASS: An extended view of the Pisces Overdensity?

    Full text link
    A density based hierarchical group-finding algorithm is used to identify stellar halo structures in a catalog of M-giants from the Two Micron All Sky Survey (2MASS). The intrinsic brightness of M-giant stars means that this catalog probes deep into the halo where substructures are expected to be abundant and easy to detect. Our analysis reveals 16 structures at high Galactic latitude (greater than 15 degree), of which 10 have been previously identified. Among the six new structures two could plausibly be due to masks applied to the data, one is associated with a strong extinction region and one is probably a part of the Monoceros ring. Another one originates at low latitudes, suggesting some contamination from disk stars, but also shows protrusions extending to high latitudes, implying that it could be a real feature in the stellar halo. The last remaining structure is free from the defects discussed above and hence is very likely a satellite remnant. Although the extinction in the direction of the structure is very low, the structure does match a low temperature feature in the dust maps. While this casts some doubt on its origin, the low temperature feature could plausibly be due to real dust in the structure itself. The angular position and distance of this structure encompass the Pisces overdensity traced by RR Lyraes in Stripe 82 of the Sloan Digital Sky Survey (SDSS). However, the 2MASS M-giants indicate that the structure is much more extended than what is visible with the SDSS, with the point of peak density lying just outside Stripe 82. The morphology of the structure is more like a cloud than a stream and reminiscent of that seen in simulations of satellites disrupting along highly eccentric orbits.Comment: Accepted for publication in Ap

    Galaxy alignments: An overview

    Full text link
    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.Comment: 43 pages excl. references, 16 figures; minor changes to match version published in Space Science Reviews; part of a topical volume on galaxy alignments, with companion papers at arXiv:1504.05546 and arXiv:1504.0546

    Data analysis challenges in transient gravitational-wave astronomy

    Full text link
    Gravitational waves are radiative solutions of space-time dynamics predicted by Einstein's theory of General Relativity. A world-wide array of large-scale and highly sensitive interferometric detectors constantly scrutinizes the geometry of the local space-time with the hope to detect deviations that would signal an impinging gravitational wave from a remote astrophysical source. Finding the rare and weak signature of gravitational waves buried in non-stationary and non-Gaussian instrument noise is a particularly challenging problem. We will give an overview of the data-analysis techniques and associated observational results obtained so far by Virgo (in Europe) and LIGO (in the US), along with the prospects offered by the up-coming advanced versions of those detectors.Comment: 7 pages, 5 figures, Proceedings of the ARENA'12 Conference, few minor change
    corecore