66,697 research outputs found

    The Promise of Preschool in Africa: A Randomized Impact Evaluation of Early Childhood Development in Rural Mozambique

    Get PDF
    This report presents initial results of a community based preschool program implemented by Save the Children in the Gaza Province of Mozambiqu

    Optimizing expected word error rate via sampling for speech recognition

    Full text link
    State-level minimum Bayes risk (sMBR) training has become the de facto standard for sequence-level training of speech recognition acoustic models. It has an elegant formulation using the expectation semiring, and gives large improvements in word error rate (WER) over models trained solely using cross-entropy (CE) or connectionist temporal classification (CTC). sMBR training optimizes the expected number of frames at which the reference and hypothesized acoustic states differ. It may be preferable to optimize the expected WER, but WER does not interact well with the expectation semiring, and previous approaches based on computing expected WER exactly involve expanding the lattices used during training. In this paper we show how to perform optimization of the expected WER by sampling paths from the lattices used during conventional sMBR training. The gradient of the expected WER is itself an expectation, and so may be approximated using Monte Carlo sampling. We show experimentally that optimizing WER during acoustic model training gives 5% relative improvement in WER over a well-tuned sMBR baseline on a 2-channel query recognition task (Google Home)

    Ground states of dipolar gases in quasi-1D ring traps

    Full text link
    We compute the ground state of dipoles in a quasi-one-dimensional ring trap using few-body techniques combined with analytic arguments. The effective interaction between two dipoles depends on their center-of-mass coordinate and can be tuned by varying the angle between dipoles and the plane of the ring. For weak enough interactions, the state resembles a weakly interacting Fermi gas or an (inhomogeneous) Lieb-Liniger gas. A mapping between the Lieb-Liniger and the dipolar-gas parameters in and beyond the Born approximation is established, and we discuss the effect of inhomogeneities based on a local-density approximation. For strongly repulsive interactions, the system exhibits crystal-like localization of the particles. Their inhomogeneous distribution may be understood in terms of a simple few-body model as well as a local-density approximation. In the case of partially attractive interactions, clustered states form for strong enough coupling, and the dependence of the state on particle number and orientation angle of the dipoles is discussed analytically.Comment: 15 pages, 10 figure

    Algebraic moment closure for population dynamics on discrete structures

    Full text link
    Moment closure on general discrete structures often requires one of the following: (i) an absence of short closed loops (zero clustering); (ii) existence of a spatial scale; (iii) ad hoc assumptions. Algebraic methods are presented to avoid the use of such assumptions for populations based on clumps, and are applied to both SIR and macroparasite disease dynamics. One approach involves a series of approximations that can be derived systematically, and another is exact and based on Lie algebraic methods.Comment: 12 pages, 4 figure
    corecore