244,726 research outputs found

    Cluster-based find and replace

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 43).Current Find and Replace tools offer their users only two options when performing a find and replace: replace one match at a time while prompting the user to confirm each replace, or replace all matches at once without any user confirmation. Each of these options can be prone to errors. In this thesis, I investigated, implemented, and tested a third option when performing a find and replace: a cluster-based find and replace. Instead of replacing one match at a time or all matches at once, the user can choose to replace a cluster of similar matches. While I hypothesized that a cluster-based find and replace interface would make users complete a find and replace task faster and more accurately, preliminary user studies suggest that a cluster-based interface may improve speed.by Alisa Marie Marshall.M.Eng

    Clustered chain founded on ant colony optimization energy efficient routing scheme for under-water wireless sensor networks

    Get PDF
    One challenge in under-water wireless sensor networks (UWSN) is to find ways to improve the life duration of networks, since it is difficult to replace or recharge batteries in sensors by the solar energy. Thus, designing an energy-efficient protocol remains as a critical task. Many cluster-based routing protocols have been suggested with the goal of reducing overall energy consumption through data aggregation and balancing energy through cluster-head rotation. However, the majority of current protocols are concerned with load balancing within each cluster. In this paper we propose a clustered chain-based energy efficient routing algorithm called CCRA that can combine fuzzy c-means (FCM) and ant colony optimization (ACO) create and manage the data transmission in the network. Our analysis and results of simulations show a better energy management in the network

    Constraints on Ωm\Omega_\mathrm{m} and σ8\sigma_8 from the potential-based cluster temperature function

    Full text link
    The abundance of galaxy clusters is in principle a powerful tool to constrain cosmological parameters, especially Ωm\Omega_\mathrm{m} and σ8\sigma_8, due to the exponential dependence in the high-mass regime. While the best observables are the X-ray temperature and luminosity, the abundance of galaxy clusters, however, is conventionally predicted as a function of mass. Hence, the intrinsic scatter and the uncertainties in the scaling relations between mass and either temperature or luminosity lower the reliability of galaxy clusters to constrain cosmological parameters. In this article, we further refine the X-ray temperature function for galaxy clusters by Angrick et al., which is based on the statistics of perturbations in the cosmic gravitational potential and proposed to replace the classical mass-based temperature function, by including a refined analytic merger model and compare the theoretical prediction to results from a cosmological hydrodynamical simulation. Although we find already a good agreement if we compare with a cluster temperature function based on the mass-weighted temperature, including a redshift-dependent scaling between mass-based and spectroscopic temperature yields even better agreement between theoretical model and numerical results. As a proof of concept, incorporating this additional scaling in our model, we constrain the cosmological parameters Ωm\Omega_\mathrm{m} and σ8\sigma_8 from an X-ray sample of galaxy clusters and tentatively find agreement with the recent cosmic microwave background based results from the Planck mission at 1σ\sigma-level.Comment: 10 pages, 5 figures, 2 tables; accepted by MNRAS; some typos correcte

    Permutation-invariant monotones for multipartite entanglement characterization

    Full text link
    In this work we consider the permutational properties of multipartite entanglement monotones. Based on the fact that genuine multipartite entanglement is a property of the entire multi-qubit system, we argue that ideal definitions for its characterizing quantities must be permutation-invariant. Using this criterion, we examine the three 4-qubit entanglement monotones introduced by Osterloh and Siewert [Phys. Rev. A. 72, 012337]. By expressing them in terms of quantities whose permutational properties can be easily derived, we find that one of these monotones is not permutation-invariant. We propose a permutation-invariant entanglement monotone to replace it, and show that our new monotone properly measures the genuine 4-qubit entanglement in 4-qubit cluster-class states. Our results provide some useful insights in understanding multipartite entanglement.Comment: Submitted to Phys.Rev.

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Unsupervised String Transformation Learning for Entity Consolidation

    Full text link
    Data integration has been a long-standing challenge in data management with many applications. A key step in data integration is entity consolidation. It takes a collection of clusters of duplicate records as input and produces a single "golden record" for each cluster, which contains the canonical value for each attribute. Truth discovery and data fusion methods, as well as Master Data Management (MDM) systems, can be used for entity consolidation. However, to achieve better results, the variant values (i.e., values that are logically the same with different formats) in the clusters need to be consolidated before applying these methods. For this purpose, we propose a data-driven method to standardize the variant values based on two observations: (1) the variant values usually can be transformed to the same representation (e.g., "Mary Lee" and "Lee, Mary") and (2) the same transformation often appears repeatedly across different clusters (e.g., transpose the first and last name). Our approach first uses an unsupervised method to generate groups of value pairs that can be transformed in the same way (i.e., they share a transformation). Then the groups are presented to a human for verification and the approved ones are used to standardize the data. In a real-world dataset with 17,497 records, our method achieved 75% recall and 99.5% precision in standardizing variant values by asking a human 100 yes/no questions, which completely outperformed a state of the art data wrangling tool
    • …
    corecore