32,929 research outputs found

    Multi-mode Tracking of a Group of Mobile Agents

    Full text link
    We consider the problem of tracking a group of mobile nodes with limited available computational and energy resources given noisy RSSI measurements and position estimates from group members. The multilateration solutions are known for energy efficiency. However, these solutions are not directly applicable to dynamic grouping scenarios where neighbourhoods and resource availability may frequently change. Existing algorithms such as cluster-based GPS duty-cycling, individual-based tracking, and multilateration-based tracking can only partially deal with the challenges of dynamic grouping scenarios. To cope with these challenges in an effective manner, we propose a new group-based multi-mode tracking algorithm. The proposed algorithm takes the topological structure of the group as well as the availability of the resources into consideration and decides the best solution at any particular time instance. We consider a clustering approach where a cluster head coordinates the usage of resources among the cluster members. We evaluate the energy-accuracy trade-off of the proposed algorithm for various fixed sampling intervals. The evaluation is based on the 2D position tracks of 40 nodes generated using Reynolds' flocking model. For a given energy budget, the proposed algorithm reduces the mean tracking error by up to 20%20\% in comparison to the existing energy-efficient cooperative algorithms. Moreover, the proposed algorithm is as accurate as the individual-based tracking while using almost half the energy.Comment: Accepted for publication in the 20th international symposium on wireless personal multimedia communications (WPMC-2017

    Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks

    Get PDF
    Local data aggregation is an effective means to save sensor node energy and prolong the lifespan of wireless sensor networks. However, when a sensor network is used to track moving objects, the task of local data aggregation in the network presents a new set of challenges, such as the necessity to estimate, usually in real time, the constantly changing state of the target based on information acquired by the nodes at different time instants. To address these issues, we propose a distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras. When a target is detected, cameras that can observe the same target interact with one another to form a cluster and elect a cluster head. Local measurements of the target acquired by members of the cluster are sent to the cluster head, which then estimates the target position via Kalman filtering and periodically transmits this information to a base station. The underlying clustering protocol allows the current state and uncertainty of the target position to be easily handed off among clusters as the object is being tracked. This allows Kalman filter-based object tracking to be carried out in a distributed manner. An extended Kalman filter is necessary since measurements acquired by the cameras are related to the actual position of the target by nonlinear transformations. In addition, in order to take into consideration the time uncertainty in the measurements acquired by the different cameras, it is necessary to introduce nonlinearity in the system dynamics. Our object tracking protocol requires the transmission of significantly fewer messages than a centralized tracker that naively transmits all of the local measurements to the base station. It is also more accurate than a decentralized tracker that employs linear interpolation for local data aggregation. Besides, the protocol is able to perform real-time estimation because our implementation takes into consideration the sparsit- - y of the matrices involved in the problem. The experimental results show that our distributed object tracking protocol is able to achieve tracking accuracy comparable to the centralized tracking method, while requiring a significantly smaller number of message transmissions in the network

    A multi-viewpoint feature-based re-identification system driven by skeleton keypoints

    Get PDF
    Thanks to the increasing popularity of 3D sensors, robotic vision has experienced huge improvements in a wide range of applications and systems in the last years. Besides the many benefits, this migration caused some incompatibilities with those systems that cannot be based on range sensors, like intelligent video surveillance systems, since the two kinds of sensor data lead to different representations of people and objects. This work goes in the direction of bridging the gap, and presents a novel re-identification system that takes advantage of multiple video flows in order to enhance the performance of a skeletal tracking algorithm, which is in turn exploited for driving the re-identification. A new, geometry-based method for joining together the detections provided by the skeletal tracker from multiple video flows is introduced, which is capable of dealing with many people in the scene, coping with the errors introduced in each view by the skeletal tracker. Such method has a high degree of generality, and can be applied to any kind of body pose estimation algorithm. The system was tested on a public dataset for video surveillance applications, demonstrating the improvements achieved by the multi-viewpoint approach in the accuracy of both body pose estimation and re-identification. The proposed approach was also compared with a skeletal tracking system working on 3D data: the comparison assessed the good performance level of the multi-viewpoint approach. This means that the lack of the rich information provided by 3D sensors can be compensated by the availability of more than one viewpoint

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented
    • …
    corecore