3,905 research outputs found

    Cluster-based communication and load balancing for simulations on dynamically adaptive grids

    Get PDF
    short paperThe present paper introduces a new communication and load-balancing scheme based on a clustering of the grid which we use for the efficient parallelization of simulations on dynamically adaptive grids. With a partitioning based on space-filling curves (SFCs), this yields several advantageous properties regarding the memory requirements and load balancing. However, for such an SFC- based partitioning, additional connectivity information has to be stored and updated for dynamically changing grids. In this work, we present our approach to keep this connectivity information run-length encoded (RLE) only for the interfaces shared between partitions. Using special properties of the underlying grid traversal and used communication scheme, we update this connectivity information implicitly for dynamically changing grids and can represent the connectivity information as a sparse communication graph: graph nodes (partitions) represent bulks of connected grid cells and each graph edge (RLE connectivity information) a unique relation between adjacent partitions. This directly leads to an efficient shared-memory parallelization with graph nodes assigned to computing cores and an efficient en bloc data exchange via graph edges. We further refer to such a partitioning approach with RLE meta information as a cluster-based domain decomposition and to each partition as a cluster. With the sparse communication graph in mind, we then extend the connectivity information represented by the graph edges with MPI ranks, yielding an en bloc communication for distributed-memory systems and a hybrid parallelization. For data migration, the stack-based intra-cluster communication allows a very low memory footprint for data migration and the RLE leads to efficient updates of connectivity information. Our benchmark is based on a shallow water simulation on a dynamically adaptive grid. We conducted performance studies for MPI-only and hybrid parallelizations, yielding an efficiency of over 90% on 256 cores. Furthermore, we demonstrate the applicability of cluster-based optimizations on distributed-memory systems.We like to thank the Munich Centre of Advanced Computing for for funding this project by providing computing time on the MAC Cluster. This work was partly supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre ”Invasive Computing” (SFB/TR 89)

    Invasive compute balancing for applications with shared and hybrid parallelization

    Get PDF
    This is the author manuscript. The final version is available from the publisher via the DOI in this record.Achieving high scalability with dynamically adaptive algorithms in high-performance computing (HPC) is a non-trivial task. The invasive paradigm using compute migration represents an efficient alternative to classical data migration approaches for such algorithms in HPC. We present a core-distribution scheduler which realizes the migration of computational power by distributing the cores depending on the requirements specified by one or more parallel program instances. We validate our approach with different benchmark suites for simulations with artificial workload as well as applications based on dynamically adaptive shallow water simulations, and investigate concurrently executed adaptivity parameter studies on realistic Tsunami simulations. The invasive approach results in significantly faster overall execution times and higher hardware utilization than alternative approaches. A dynamic resource management is therefore mandatory for a more efficient execution of scenarios similar to our simulations, e.g. several Tsunami simulations in urgent computing, to overcome strong scalability challenges in the area of HPC. The optimizations obtained by invasive migration of cores can be generalized to similar classes of algorithms with dynamic resource requirements.This work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre ”Invasive Computing” (SFB/TR 89)

    Evaluation of an efficient etack-RLE clustering concept for dynamically adaptive grids

    Get PDF
    This is the author accepted manuscript. The final version is available from the Society for Industrial and Applied Mathematics via the DOI in this record.Abstract. One approach to tackle the challenge of efficient implementations for parallel PDE simulations on dynamically changing grids is the usage of space-filling curves (SFC). While SFC algorithms possess advantageous properties such as low memory requirements and close-to-optimal partitioning approaches with linear complexity, they require efficient communication strategies for keeping and utilizing the connectivity information, in particular for dynamically changing grids. Our approach is to use a sparse communication graph to store the connectivity information and to transfer data block-wise. This permits efficient generation of multiple partitions per memory context (denoted by clustering) which - in combination with a run-length encoding (RLE) - directly leads to elegant solutions for shared, distributed and hybrid parallelization and allows cluster-based optimizations. While previous work focused on specific aspects, we present in this paper an overall compact summary of the stack-RLE clustering approach completed by aspects on the vertex-based communication that ease up understanding the approach. The central contribution of this work is the proof of suitability of the stack-RLE clustering approach for an efficient realization of different, relevant building blocks of Scientific Computing methodology and real-life CSE applications: We show 95% strong scalability for small-scale scalability benchmarks on 512 cores and weak scalability of over 90% on 8192 cores for finite-volume solvers and changing grid structure in every time step; optimizations of simulation data backends by writer tasks; comparisons of analytical benchmarks to analyze the adaptivity criteria; and a Tsunami simulation as a representative real-world showcase of a wave propagation for our approach which reduces the overall workload by 95% for parallel fully-adaptive mesh refinement and, based on a comparison with SFC-ordered regular grid cells, reduces the computation time by a factor of 7.6 with improved results and a factor of 62.2 with results of similar accuracy of buoy station dataThis work was partly supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre “Invasive Computing” (SFB/TR 89)

    SFC-based Communication Metadata Encoding for Adaptive Mesh

    Get PDF
    This volume of the series “Advances in Parallel Computing” contains the proceedings of the International Conference on Parallel Programming – ParCo 2013 – held from 10 to 13 September 2013 in Garching, Germany. The conference was hosted by the Technische Universität München (Department of Informatics) and the Leibniz Supercomputing Centre.The present paper studies two adaptive mesh refinement (AMR) codes whose grids rely on recursive subdivison in combination with space-filling curves (SFCs). A non-overlapping domain decomposition based upon these SFCs yields several well-known advantageous properties with respect to communication demands, balancing, and partition connectivity. However, the administration of the meta data, i.e. to track which partitions exchange data in which cardinality, is nontrivial due to the SFC’s fractal meandering and the dynamic adaptivity. We introduce an analysed tree grammar for the meta data that restricts it without loss of information hierarchically along the subdivision tree and applies run length encoding. Hence, its meta data memory footprint is very small, and it can be computed and maintained on-the-fly even for permanently changing grids. It facilitates a forkjoin pattern for shared data parallelism. And it facilitates replicated data parallelism tackling latency and bandwidth constraints respectively due to communication in the background and reduces memory requirements by avoiding adjacency information stored per element. We demonstrate this at hands of shared and distributed parallelized domain decompositions.This work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre “Invasive Computing (SFB/TR 89). It is partially based on work supported by Award No. UK-c0020, made by the King Abdullah University of Science and Technology (KAUST)

    Dynamically adaptive partition-based interest management in distributed simulation

    Get PDF
    Performance and scalability of distributed simulations depends primarily on the effectiveness of the employed interest management (IM) schema that aims at reducing the overall computational and messaging effort on the shared data to a necessary minimum. Existing IM approaches, which are based on variations or combinations of two principle data distribution techniques, namely region-based and grid-based techniques, perform poorly if the simulation develops an overloaded host. In order to facilitate distributing the processing load from overloaded areas of the shared data to less loaded hosts, the partition-based technique is introduced that allows for variable-size partitioning the shared data. Based on this data distribution technique, an IM approach is sketched that is dynamically adaptive to access latencies of simulation objects on the shared data as well as to the physical location of the objects. Since this re-distribution is decided depending on the messaging effort of the simulation objects for updating data partitions, any load balanced constellation has the additional advantage to be of minimal overall messaging effort. Hence, the IM schema dynamically resolves messaging overloading as well as overloading of hosts with simulation objects and therefore facilitates dynamic system scalability

    Decentralized load balancing in heterogeneous computational grids

    Get PDF
    With the rapid development of high-speed wide-area networks and powerful yet low-cost computational resources, grid computing has emerged as an attractive computing paradigm. The space limitations of conventional distributed systems can thus be overcome, to fully exploit the resources of under-utilised computing resources in every region around the world for distributed jobs. Workload and resource management are key grid services at the service level of grid software infrastructure, where issues of load balancing represent a common concern for most grid infrastructure developers. Although these are established research areas in parallel and distributed computing, grid computing environments present a number of new challenges, including large-scale computing resources, heterogeneous computing power, the autonomy of organisations hosting the resources, uneven job-arrival pattern among grid sites, considerable job transfer costs, and considerable communication overhead involved in capturing the load information of sites. This dissertation focuses on designing solutions for load balancing in computational grids that can cater for the unique characteristics of grid computing environments. To explore the solution space, we conducted a survey for load balancing solutions, which enabled discussion and comparison of existing approaches, and the delimiting and exploration of the apportion of solution space. A system model was developed to study the load-balancing problems in computational grid environments. In particular, we developed three decentralised algorithms for job dispatching and load balancing—using only partial information: the desirability-aware load balancing algorithm (DA), the performance-driven desirability-aware load-balancing algorithm (P-DA), and the performance-driven region-based load-balancing algorithm (P-RB). All three are scalable, dynamic, decentralised and sender-initiated. We conducted extensive simulation studies to analyse the performance of our load-balancing algorithms. Simulation results showed that the algorithms significantly outperform preexisting decentralised algorithms that are relevant to this research

    A Parallel Mesh-Adaptive Framework for Hyperbolic Conservation Laws

    Full text link
    We report on the development of a computational framework for the parallel, mesh-adaptive solution of systems of hyperbolic conservation laws like the time-dependent Euler equations in compressible gas dynamics or Magneto-Hydrodynamics (MHD) and similar models in plasma physics. Local mesh refinement is realized by the recursive bisection of grid blocks along each spatial dimension, implemented numerical schemes include standard finite-differences as well as shock-capturing central schemes, both in connection with Runge-Kutta type integrators. Parallel execution is achieved through a configurable hybrid of POSIX-multi-threading and MPI-distribution with dynamic load balancing. One- two- and three-dimensional test computations for the Euler equations have been carried out and show good parallel scaling behavior. The Racoon framework is currently used to study the formation of singularities in plasmas and fluids.Comment: late submissio

    Achieving High Speed CFD simulations: Optimization, Parallelization, and FPGA Acceleration for the unstructured DLR TAU Code

    Get PDF
    Today, large scale parallel simulations are fundamental tools to handle complex problems. The number of processors in current computation platforms has been recently increased and therefore it is necessary to optimize the application performance and to enhance the scalability of massively-parallel systems. In addition, new heterogeneous architectures, combining conventional processors with specific hardware, like FPGAs, to accelerate the most time consuming functions are considered as a strong alternative to boost the performance. In this paper, the performance of the DLR TAU code is analyzed and optimized. The improvement of the code efficiency is addressed through three key activities: Optimization, parallelization and hardware acceleration. At first, a profiling analysis of the most time-consuming processes of the Reynolds Averaged Navier Stokes flow solver on a three-dimensional unstructured mesh is performed. Then, a study of the code scalability with new partitioning algorithms are tested to show the most suitable partitioning algorithms for the selected applications. Finally, a feasibility study on the application of FPGAs and GPUs for the hardware acceleration of CFD simulations is presented
    corecore