54 research outputs found

    Cluster Synchronization of Time-Varying Delays Coupled Complex Networks with Nonidentical Dynamical Nodes

    Get PDF
    This paper investigates a new cluster synchronization scheme in the nonlinear coupled complex dynamical networks with nonidentical nodes. The controllers are designed based on the community structure of the networks; some sufficient criteria are derived to ensure cluster synchronization of the network model. Particularly, the weight configuration matrix is not assumed to be symmetric, irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results

    Synchronization of fractional chaotic complex networks with delays

    Get PDF
    summary:The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function VV and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method

    Fast fixed-time synchronization of T–S fuzzy complex networks

    Get PDF
    In this paper, fast fixed-time (FDT) synchronization of T–S fuzzy (TSF) complex networks (CNs) is considered. The given control schemes can make the CNs synchronize with the given isolated system more fleetly than the most of existing results. By constructing comparison system and applying new analytical techniques, sufficient conditions are established to derive fast FDT synchronization speedily. In order to give some comparisons, FDT synchronization of the considered CNs is also presented by designing FDT fuzzy controller. Numerical examples are given to illustrate our new results

    Exponential Synchronization of Two Nonlinearly Coupled Complex Networks with Time-Varying Delayed Dynamical Nodes

    Get PDF
    This paper investigates the exponential synchronization between two nonlinearly coupled complex networks with time-varying delay dynamical nodes. Based on the Lyapunov stability theory, some criteria for the exponential synchronization are derived with adaptive control method. Moreover, the presented results here can also be applied to complex dynamical networks with single time delay case. Finally, numerical analysis and simulations for two nonlinearly coupled networks which are composed of the time-delayed Lorenz chaotic systems are given to demonstrate the effectiveness and feasibility of the proposed complex network synchronization scheme
    • …
    corecore