6,238 research outputs found

    Fast Biclustering by Dual Parameterization

    Get PDF
    We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time 25pk+O(n+m)2^{5 \sqrt{pk}} + O(n+m) for p-Starforest Editing and 2O(pklog(pk))+O(n+m)2^{O(p \sqrt{k} \log(pk))} + O(n+m) for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for fixed number of clusters, since p is then considered a constant. Our results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.Comment: Accepted for presentation at IPEC 201

    Cluster Editing in Multi-Layer and Temporal Graphs

    Get PDF
    Motivated by the recent rapid growth of research for algorithms to cluster multi-layer and temporal graphs, we study extensions of the classical Cluster Editing problem. In Multi-Layer Cluster Editing we receive a set of graphs on the same vertex set, called layers and aim to transform all layers into cluster graphs (disjoint unions of cliques) that differ only slightly. More specifically, we want to mark at most d vertices and to transform each layer into a cluster graph using at most k edge additions or deletions per layer so that, if we remove the marked vertices, we obtain the same cluster graph in all layers. In Temporal Cluster Editing we receive a sequence of layers and we want to transform each layer into a cluster graph so that consecutive layers differ only slightly. That is, we want to transform each layer into a cluster graph with at most k edge additions or deletions and to mark a distinct set of d vertices in each layer so that each two consecutive layers are the same after removing the vertices marked in the first of the two layers. We study the combinatorial structure of the two problems via their parameterized complexity with respect to the parameters d and k, among others. Despite the similar definition, the two problems behave quite differently: In particular, Multi-Layer Cluster Editing is fixed-parameter tractable with running time k^{O(k + d)} s^{O(1)} for inputs of size s, whereas Temporal Cluster Editing is W[1]-hard with respect to k even if d = 3

    Tight bounds for parameterized complexity of Cluster Editing

    Get PDF
    In the Correlation Clustering problem, also known as Cluster Editing, we are given an undirected graph G and a positive integer k; the task is to decide whether G can be transformed into a cluster graph, i.e., a disjoint union of cliques, by changing at most k adjacencies, that is, by adding or deleting at most k edges. The motivation of the problem stems from various tasks in computational biology (Ben-Dor et al., Journal of Computational Biology 1999) and machine learning (Bansal et al., Machine Learning 2004). Although in general Correlation Clustering is APX-hard (Charikar et al., FOCS 2003), the version of the problem where the number of cliques may not exceed a prescribed constant p admits a PTAS (Giotis and Guruswami, SODA 2006). We study the parameterized complexity of Correlation Clustering with this restriction on the number of cliques to be created. We give an algorithm that - in time O(2^{O(sqrt{pk})} + n+m) decides whether a graph G on n vertices and m edges can be transformed into a cluster graph with exactly p cliques by changing at most k adjacencies. We complement these algorithmic findings by the following, surprisingly tight lower bound on the asymptotic behavior of our algorithm. We show that unless the Exponential Time Hypothesis (ETH) fails - for any constant 0 <= sigma <= 1, there is p = Theta(k^sigma) such that there is no algorithm deciding in time 2^{o(sqrt{pk})} n^{O(1)} whether an n-vertex graph G can be transformed into a cluster graph with at most p cliques by changing at most k adjacencies. Thus, our upper and lower bounds provide an asymptotically tight analysis of the multivariate parameterized complexity of the problem for the whole range of values of p from constant to a linear function of k.publishedVersio
    corecore