394 research outputs found

    Entwicklung und Einführung von Produktionssteuerungsverbesserungen für die kundenorientierte Halbleiterfertigung

    Get PDF
    Production control in a semiconductor production facility is a very complex and timeconsuming task. Different demands regarding facility performance parameters are defined by customer and facility management. These requirements are usually opponents, and an efficient strategy is not simple to define. In semiconductor manufacturing, the available production control systems often use priorities to define the importance of each production lot. The production lots are ranked according to the defined priorities. This process is called dispatching. The priority allocation is carried out by special algorithms. In literature, a huge variety of different strategies and rules is available. For the semiconductor foundry business, there is a need for a very flexible and adaptable policy taking the facility state and the defined requirements into account. At our case the production processes are characterized by a low-volume high-mix product portfolio. This portfolio causes additional stability problems and performance lags. The unstable characteristic increases the influence of reasonable production control logic. This thesis offers a very flexible and adaptable production control policy. This policy is based on a detailed facility model with real-life production data. The data is extracted from a real high-mix low-volume semiconductor facility. The dispatching strategy combines several dispatching rules. Different requirements like line balance, throughput optimization and on-time delivery targets can be taken into account. An automated detailed facility model calculates a semi-optimal combination of the different dispatching rules under a defined objective function. The objective function includes different demands from the management and the customer. The optimization is realized by a genetic heuristic for a fast and efficient finding of a close-to-optimal solution. The strategy is evaluated with real-life production data. The analysis with the detailed facility model of this fab shows an average improvement of 5% to 8% for several facility performance parameters like cycle time per mask layer. Finally the approach is realized and applied at a typical high-mix low-volume semiconductor facility. The system realization bases on a JAVA implementation. This implementation includes common state-of-the-art technologies such as web services. The system replaces the older production control solution. Besides the dispatching algorithm, the production policy includes the possibility to skip several metrology operations under defined boundary conditions. In a real-life production process, not all metrology operations are necessary for each lot. The thesis evaluates the influence of the sampling mechanism to the production process. The solution is included into the system implementation as a framework to assign different sampling rules to different metrology operations. Evaluations show greater improvements at bottleneck situations. After the productive introduction and usage of both systems, the practical results are evaluated. The staff survey offers good acceptance and response to the system. Furthermore positive effects on the performance measures are visible. The implemented system became part of the daily tools of a real semiconductor facility.Produktionssteuerung im Bereich der kundenorientierten Halbleiterfertigung ist heutzutage eine sehr komplexe und zeitintensive Aufgabe. Verschiedene Anforderungen bezüglich der Fabrikperformance werden seitens der Kunden als auch des Fabrikmanagements definiert. Diese Anforderungen stehen oftmals in Konkurrenz. Dadurch ist eine effiziente Strategie zur Kompromissfindung nicht einfach zu definieren. Heutige Halbleiterfabriken mit ihren verfügbaren Produktionssteuerungssystemen nutzen oft prioritätsbasierte Lösungen zur Definition der Wichtigkeit eines jeden Produktionsloses. Anhand dieser Prioritäten werden die Produktionslose sortiert und bearbeitet. In der Literatur existiert eine große Bandbreite verschiedener Algorithmen. Im Bereich der kundenorientierten Halbleiterfertigung wird eine sehr flexible und anpassbare Strategie benötigt, die auch den aktuellen Fabrikzustand als auch die wechselnden Kundenanforderungen berücksichtigt. Dies gilt insbesondere für den hochvariablen geringvolumigen Produktionsfall. Diese Arbeit behandelt eine flexible Strategie für den hochvariablen Produktionsfall einer solchen Produktionsstätte. Der Algorithmus basiert auf einem detaillierten Fabriksimulationsmodell mit Rückgriff auf Realdaten. Neben synthetischen Testdaten wurde der Algorithmus auch anhand einer realen Fertigungsumgebung geprüft. Verschiedene Steuerungsregeln werden hierbei sinnvoll kombiniert und gewichtet. Wechselnde Anforderungen wie Linienbalance, Durchsatz oder Liefertermintreue können adressiert und optimiert werden. Mittels einer definierten Zielfunktion erlaubt die automatische Modellgenerierung eine Optimierung anhand des aktuellen Fabrikzustandes. Die Optimierung basiert auf einen genetischen Algorithmus für eine flexible und effiziente Lösungssuche. Die Strategie wurde mit Realdaten aus der Fertigung einer typischen hochvariablen geringvolumigen Halbleiterfertigung geprüft und analysiert. Die Analyse zeigt ein Verbesserungspotential von 5% bis 8% für die bekannten Performancekriterien wie Cycletime im Vergleich zu gewöhnlichen statischen Steuerungspolitiken. Eine prototypische Implementierung realisiert diesen Ansatz zur Nutzung in der realen Fabrikumgebung. Die Implementierung basiert auf der JAVA-Programmiersprache. Aktuelle Implementierungsmethoden erlauben den flexiblen Einsatz in der Produktionsumgebung. Neben der Fabriksteuerung wurde die Möglichkeit der Reduktion von Messoperationszeit (auch bekannt unter Sampling) unter gegebenen Randbedingungen einer hochvariablen geringvolumigen Fertigung untersucht und geprüft. Oftmals ist aufgrund stabiler Prozesse in der Fertigung die Messung aller Lose an einem bestimmten Produktionsschritt nicht notwendig. Diese Arbeit untersucht den Einfluss dieses gängigen Verfahrens aus der Massenfertigung für die spezielle geringvolumige Produktionsumgebung. Die Analysen zeigen insbesondere in Ausnahmesituationen wie Anlagenausfällen und Kapazitätsengpässe einen positiven Effekt, während der Einfluss unter normalen Produktionsbedingungen aufgrund der hohen Produktvariabilität als gering angesehen werden kann. Nach produktiver Einführung in einem typischen Vertreter dieser Halbleiterfabriken zeigten sich schnell positive Effekte auf die Fabrikperformance als auch eine breite Nutzerakzeptanz. Das implementierte System wurde Bestandteil der täglichen genutzten Werkzeuglandschaft an diesem Standort

    Online Simulation in Semiconductor Manufacturing

    Get PDF
    In semiconductor manufacturing discrete event simulation systems are quite established to support multiple planning decisions. During the recent years, the productivity is increasing by using simulation methods. The motivation for this thesis is to use online simulation not only for planning decisions, but also for a wide range of operational decisions. Therefore an integrated online simulation system for short term forecasting has been developed. The production environment is a mature high mix logic wafer fab. It has been selected because of its vast potential for performance improvement. In this thesis several aspects of online simulation will be addressed: The first aspect is the implementation of an online simulation system in semiconductor manufacturing. The general problem is to achieve a high speed, a high level of detail, and a high forecast accuracy. To resolve these problems, an online simulation system has been created. The simulation model has a high level of detail. It is created automatically from underling fab data. To create such a simulation model from fab data, additional problems related to the underlying data arise. The major parts are the data access, the data integration, and the data quality. These problems have been solved by using an integrated data model with several data extraction, data transformation, and data cleaning steps. The second aspect is related to the accuracy of online simulation. The overall problem is to increase the forecast horizon, increase the level of detail of the forecast and reduce the forecast error. To provide useful forecast results, the simulation model contains a high level of modeling details and a proper initialization. The influences on the forecast quality will be analyzed. The results show that the simulation forecast accuracy achieves good quality to predict future fab performance. The last aspect is to find ways to use simulation forecast results to improve the fab performance. Numerous applications have been identified. For each application a description is available. It contains the requirements of such a forecast, the decision variables, and background information. An application example shows, where a performance problem exists and how online simulation is able to resolve it. To further enhance the real time capability of online simulation, a major part is to investigate new ways to connect the simulation model with the wafer fab. For fab driven simulation, the simulation model and the real wafer fab run concurrently. The wafer fab provides several events to update the simulation during runtime. So the model is always synchronized with the real fab. It becomes possible to start a simulation run in real time. There is no further delay for data extraction, data transformation and model creation. A prototype for a single work center has been implemented to show the feasibility

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model : A Case Study [TR940. S618 2008 f rb].

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. The industry of semiconductor wafer fabrication (“fab”) has invested a huge amount of capital on the manufacturing equipments particular in photolithograph

    Development and Simulation Assessment of Semiconductor Production System Enhancements for Fast Cycle Times

    Get PDF
    Long cycle times in semiconductor manufacturing represent an increasing challenge for the industry and lead to a growing need of break-through approaches to reduce it. Small lot sizes and the conversion of batch processes to mini-batch or single-wafer processes are widely regarded as a promising means for a step-wise cycle time reduction. Our analysis with discrete-event simulation and queueing theory shows that small lot size and the replacement of batch tools with mini-batch or single wafer tools are beneficial but lot size reduction lacks persuasive effectiveness if reduced by more than half. Because the results are not completely convincing, we develop a new semiconductor tool type that further reduces cycle time by lot streaming leveraging the lot size reduction efforts. We show that this combined approach can lead to a cycle time reduction of more than 80%

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model: A Case Study

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. Perkembangan pesat dalam bidang industri semikonduktor kini telah memerangsangkan teknik untuk mengoptimumkan penggunaan mesin-mesin dengan efektif setelah membelanjakan beribu juta dalam perlaburan. Tanpa penggunaan perisian komputer yang canggih dalam analisis, adalah sukar untuk menggunakan teknik purba dalam analisis pengiraan apabila menghadapi perkembangan produk yang semakin tinggi teknologinya. Dalam kajian ini, satu model simulasi telah dibina untuk menganalisis masa mendulu dalam alatan photolithography melalui teknik yang lebih sistematik dan efektif. Model simulasi ini telah dibina berasaskan perisian computer yang memerlukan informasi yang teliti seperti mas a memproses dan juga aliran proses dalam alatan photolithography. The industry of semiconductor wafer fabrication ("fab") has invested a huge amount of capital on the manufacturing equipments particular in photolithography area which has driven the needs to re-look at the most profitable way of utilizing and operating them efficiently. Traditional industrial engineering analysis techniques through mathematical models or static models for the studies of photolithography process are simply not adequate to analyze these complex environments. In this research, a more realistic representation of photolithography tools that can give a better prediction results and a more systematic methodology for minimizing photolithography cycle time is presented. The proposed method is to reduce waiting time and increase utilization of the photolithography process, which would result in an overall equipment cycle time reduction

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Semantic data integration for supply chain management: with a specific focus on applications in the semiconductor industry

    Get PDF
    Supply Chain Management (SCM) is essential to monitor, control, and enhance the performance of SCs. Increasing globalization and diversity of Supply Chains (SC)s lead to complex SC structures, limited visibility among SC partners, and challenging collaboration caused by dispersed data silos. Digitalization is responsible for driving and transforming SCs of fundamental sectors such as the semiconductor industry. This is further accelerated due to the inevitable role that semiconductor products play in electronics, IoT, and security systems. Semiconductor SCM is unique as the SC operations exhibit special features, e.g., long production lead times and short product life. Hence, systematic SCM is required to establish information exchange, overcome inefficiency resulting from incompatibility, and adapt to industry-specific challenges. The Semantic Web is designed for linking data and establishing information exchange. Semantic models provide high-level descriptions of the domain that enable interoperability. Semantic data integration consolidates the heterogeneous data into meaningful and valuable information. The main goal of this thesis is to investigate Semantic Web Technologies (SWT) for SCM with a specific focus on applications in the semiconductor industry. As part of SCM, End-to-End SC modeling ensures visibility of SC partners and flows. Existing models are limited in the way they represent operational SC relationships beyond one-to-one structures. The scarcity of empirical data from multiple SC partners hinders the analysis of the impact of supply network partners on each other and the benchmarking of the overall SC performance. In our work, we investigate (i) how semantic models can be used to standardize and benchmark SCs. Moreover, in a volatile and unpredictable environment, SC experts require methodical and efficient approaches to integrate various data sources for informed decision-making regarding SC behavior. Thus, this work addresses (ii) how semantic data integration can help make SCs more efficient and resilient. Moreover, to secure a good position in a competitive market, semiconductor SCs strive to implement operational strategies to control demand variation, i.e., bullwhip, while maintaining sustainable relationships with customers. We examine (iii) how we can apply semantic technologies to specifically support semiconductor SCs. In this thesis, we provide semantic models that integrate, in a standardized way, SC processes, structure, and flows, ensuring both an elaborate understanding of the holistic SCs and including granular operational details. We demonstrate that these models enable the instantiation of a synthetic SC for benchmarking. We contribute with semantic data integration applications to enable interoperability and make SCs more efficient and resilient. Moreover, we leverage ontologies and KGs to implement customer-oriented bullwhip-taming strategies. We create semantic-based approaches intertwined with Artificial Intelligence (AI) algorithms to address semiconductor industry specifics and ensure operational excellence. The results prove that relying on semantic technologies contributes to achieving rigorous and systematic SCM. We deem that better standardization, simulation, benchmarking, and analysis, as elaborated in the contributions, will help master more complex SC scenarios. SCs stakeholders can increasingly understand the domain and thus are better equipped with effective control strategies to restrain disruption accelerators, such as the bullwhip effect. In essence, the proposed Sematic Web Technology-based strategies unlock the potential to increase the efficiency, resilience, and operational excellence of supply networks and the semiconductor SC in particular

    Financial Resources and Technology to Transition to 450mm Semiconductor Wafer Foundries

    Get PDF
    Future 450mm semiconductor wafer foundries are expected to produce billions of low cost, leading-edge processors, memories, and wireless sensors for Internet of Everything applications in smart cities, smart grids, and smart infrastructures. The problem has been a lack of wise investment decision making using traditional semiconductor industry models. The purpose of this study was to design decision-making models to conserve financial resources from conception to commercialization using real options to optimize production capacity, to defer an investment, and to abandon the project. The study consisted of 4 research questions that compared net present value from real option closed-form equations and binomial lattice models using the Black-Scholes option pricing theory. Three had focused on sensitivity parameters. Moore\u27s second law was applied to find the total foundry cost. Data were collected using snowball sampling and face-to-face surveys. Original survey data from 46 Americans in the U.S.A. were compared to 46 Europeans in Germany. Data were analyzed with a paired-difference test and the Box-Behnken design was employed to create prediction models to support each hypothesis. Data from the real option models and survey findings indicate American 450mm foundries will likely capture greater value and will choose the differentiation strategy to produce premium chips, whereas higher capacity, cost leadership European foundries will produce commodity chips. Positive social change and global quality of life improvements are expected to occur by 2020 when semiconductors will be needed for the $14 trillion Internet of Everything market to create safe self-driving vehicles, autonomous robots, smart homes, novel medical electronics, wearable computers with streaming augmented reality information, and digital wallets for cashless societies

    Virtual metrology for plasma etch processes.

    Get PDF
    Plasma processes can present dicult control challenges due to time-varying dynamics and a lack of relevant and/or regular measurements. Virtual metrology (VM) is the use of mathematical models with accessible measurements from an operating process to estimate variables of interest. This thesis addresses the challenge of virtual metrology for plasma processes, with a particular focus on semiconductor plasma etch. Introductory material covering the essentials of plasma physics, plasma etching, plasma measurement techniques, and black-box modelling techniques is rst presented for readers not familiar with these subjects. A comprehensive literature review is then completed to detail the state of the art in modelling and VM research for plasma etch processes. To demonstrate the versatility of VM, a temperature monitoring system utilising a state-space model and Luenberger observer is designed for the variable specic impulse magnetoplasma rocket (VASIMR) engine, a plasma-based space propulsion system. The temperature monitoring system uses optical emission spectroscopy (OES) measurements from the VASIMR engine plasma to correct temperature estimates in the presence of modelling error and inaccurate initial conditions. Temperature estimates within 2% of the real values are achieved using this scheme. An extensive examination of the implementation of a wafer-to-wafer VM scheme to estimate plasma etch rate for an industrial plasma etch process is presented. The VM models estimate etch rate using measurements from the processing tool and a plasma impedance monitor (PIM). A selection of modelling techniques are considered for VM modelling, and Gaussian process regression (GPR) is applied for the rst time for VM of plasma etch rate. Models with global and local scope are compared, and modelling schemes that attempt to cater for the etch process dynamics are proposed. GPR-based windowed models produce the most accurate estimates, achieving mean absolute percentage errors (MAPEs) of approximately 1:15%. The consistency of the results presented suggests that this level of accuracy represents the best accuracy achievable for the plasma etch system at the current frequency of metrology. Finally, a real-time VM and model predictive control (MPC) scheme for control of plasma electron density in an industrial etch chamber is designed and tested. The VM scheme uses PIM measurements to estimate electron density in real time. A predictive functional control (PFC) scheme is implemented to cater for a time delay in the VM system. The controller achieves time constants of less than one second, no overshoot, and excellent disturbance rejection properties. The PFC scheme is further expanded by adapting the internal model in the controller in real time in response to changes in the process operating point
    corecore