399 research outputs found

    Distributed data cache designs for clustered VLIW processors

    Get PDF
    Wire delays are a major concern for current and forthcoming processors. One approach to deal with this problem is to divide the processor into semi-independent units referred to as clusters. A cluster usually consists of a local register file and a subset of the functional units, while the L1 data cache typically remains centralized in What we call partially distributed architectures. However, as technology evolves, the relative latency of such a centralized cache will increase, leading to an important impact on performance. In this paper, we propose partitioning the L1 data cache among clusters for clustered VLIW processors. We refer to this kind of design as fully distributed processors. In particular; we propose and evaluate three different configurations: a snoop-based cache coherence scheme, a word-interleaved cache, and flexible LO-buffers managed by the compiler. For each alternative, instruction scheduling techniques targeted to cyclic code are developed. Results for the Mediabench suite'show that the performance of such fully distributed architectures is always better than the performance of a partially distributed one with the same amount of resources. In addition, the key aspects of each fully distributed configuration are explored.Peer ReviewedPostprint (published version

    Flexible compiler-managed L0 buffers for clustered VLIW processors

    Get PDF
    Wire delays are a major concern for current and forthcoming processors. One approach to attack this problem is to divide the processor into semi-independent units referred to as clusters. A cluster usually consists of a local register file and a subset of the functional units, while the data cache remains centralized. However, as technology evolves, the latency of such a centralized cache increase leading to an important performance impact. In this paper, we propose to include flexible low-latency buffers in each cluster in order to reduce the performance impact of higher cache latencies. The reduced number of entries in each buffer permits the design of flexible ways to map data from L1 to these buffers. The proposed L0 buffers are managed by the compiler, which is responsible to decide which memory instructions make us of them. Effective instruction scheduling techniques are proposed to generate code that exploits these buffers. Results for the Mediabench benchmark suite show that the performance of a clustered VLIW processor with a unified L1 data cache is improved by 16% when such buffers are used. In addition, the proposed architecture also shows significant advantages over both MultiVLIW processors and clustered processors with a word-interleaved cache, two state-of-the-art designs with a distributed L1 data cache.Peer ReviewedPostprint (published version

    Performance evaluation of CSMT for VLIW processors

    Get PDF
    Clustered VLIW embedded processors have become widespread due to benefits of simple hardware and low power. However, while some applications exhibit large amounts of instruction level parallelism (ILP) and benefit from very wide machines, others have little ILP, which wastes precious resources in wide processors. Simultaneous MultiThreading (SMT) is a well known technique that improves resource utilization by exploiting thread level parallelism at the instruction grain level. However, implementing SMT for VLIWs requires complex structures. CSMT (Clusterlevel Simultaneous MultiThreading) allows some degree of SMT in clustered VLIW processors. CSMT considers the set of operations that execute simultaneously in a given cluster (named bundle)as the assignment unit. All bundles belonging to a VLIW instruction from a given thread are issued simultaneously. To minimize cluster conflicts between threads, a very simple hardwarebased cluster renaming mechanism is proposed. The experimental results show that CSMT significantly improves ILP when compared with other multithreading approaches suited for VLIW. For instance, with 4 threads CSMT shows an average speedup of 113% over a single-thread VLIW architecture and 36% over Interleaved MultiThreading (IMT). In some cases, speedup can be as high as 228% over single thread architecture and 97% over IMT. Also CSMT for a 2-thread processor, achieves almost the same performance as IMT for a 4-thread processor and also outperforms it in some cases.Peer ReviewedPostprint (author’s final draft

    Variable-based multi-module data caches for clustered VLIW processors

    Get PDF
    Memory structures consume an important fraction of the total processor energy. One solution to reduce the energy consumed by cache memories consists of reducing their supply voltage and/or increase their threshold voltage at an expense in access time. We propose to divide the L1 data cache into two cache modules for a clustered VLIW processor consisting of two clusters. Such division is done on a variable basis so that the address of a datum determines its location. Each cache module is assigned to a cluster and can be set up as a fast power-hungry module or as a slow power-aware module. We also present compiler techniques in order to distribute variables between the two cache modules and generate code accordingly. We have explored several cache configurations using the Mediabench suite and we have observed that the best distributed cache organization outperforms traditional cache organizations by 19%-31% in energy-delay and by 11%-29% in energy-delay. In addition, we also explore a reconfigurable distributed cache, where the cache can be reconfigured on a context switch. This reconfigurable scheme further outperforms the best previous distributed organization by 3%-4%.Peer ReviewedPostprint (published version

    A unified modulo scheduling and register allocation technique for clustered processors

    Get PDF
    This work presents a modulo scheduling framework for clustered ILP processors that integrates the cluster assignment, instruction scheduling and register allocation steps in a single phase. This unified approach is more effective than traditional approaches based on sequentially performing some (or all) of the three steps, since it allows optimizing the global code generation problem instead of searching for optimal solutions to each individual step. Besides, it avoids the iterative nature of traditional approaches, which require repeated applications of the three steps until a valid solution is found. The proposed framework includes a mechanism to insert spill code on-the-fly and heuristics to evaluate the quality of partial schedules considering simultaneously inter-cluster communications, memory pressure and register pressure. Transformations that allow trading pressure on a type of resource for another resource are also included. We show that the proposed technique outperforms previously proposed techniques. For instance, the average speed-up for the SPECfp95 is 36% for a 4-cluster configuration.Peer ReviewedPostprint (published version

    The effectiveness of loop unrolling for modulo scheduling in clustered VLIW architectures

    Get PDF
    Clustered organizations are becoming a common trend in the design of VLIW architectures. In this work we propose a novel modulo scheduling approach for such architectures. The proposed technique performs the cluster assignment and the instruction scheduling in a single pass, which is shown to be more effective than doing first the assignment and later the scheduling. We also show that loop unrolling significantly enhances the performance of the proposed scheduler especially when the communication channel among clusters is the main performance bottleneck. By selectively unrolling some loops, we can obtain the best performance with the minimum increase in code size. Performance evaluation for the SPECfp95 shows that the clustered architecture achieves about the same IPC (Instructions Per Cycle) as a unified architecture with the same resources. Moreover when the cycle time is taken into account, a 4-cluster configurations is 3.6 times faster than the unified architecture.Peer ReviewedPostprint (published version

    Virtual cluster scheduling through the scheduling graph

    Get PDF
    This paper presents an instruction scheduling and cluster assignment approach for clustered processors. The proposed technique makes use of a novel representation named the scheduling graph which describes all possible schedules. A powerful deduction process is applied to this graph, reducing at each step the set of possible schedules. In contrast to traditional list scheduling techniques, the proposed scheme tries to establish relations among instructions rather than assigning each instruction to a particular cycle. The main advantage is that wrong or poor schedules can be anticipated and discarded earlier. In addition, cluster assignment of instructions is performed using another novel concept called virtual clusters, which define sets of instructions that must execute in the same cluster. These clusters are managed during the deduction process to identify incompatibilities among instructions. The mapping of virtual to physical clusters is postponed until the scheduling of the instructions has finalized. The advantages this novel approach features include: (1) accurate scheduling information when assigning, and, (2) accurate information of the cluster assignment constraints imposed by scheduling decisions. We have implemented and evaluated the proposed scheme with superblocks extracted from Speclnt95 and MediaBench. The results show that this approach produces better schedules than the previous state-of-the-art. Speed-ups are up to 15%, with average speed-ups ranging from 2.5% (2-Clusters) to 9.5% (4-Clusters).Peer ReviewedPostprint (published version

    Modulo scheduling with integrated register spilling for clustered VLIW architectures

    Get PDF
    Clustering is a technique to decentralize the design of future wide issue VLIW cores and enable them to meet the technology constraints in terms of cycle time, area and power dissipation. In a clustered design, registers and functional units are grouped in clusters so that new instructions are needed to move data between them. New aggressive instruction scheduling techniques are required to minimize the negative effect of resource clustering and delays in moving data around. In this paper we present a novel software pipelining technique that performs instruction scheduling with reduced register requirements, register allocation, register spilling and inter-cluster communication in a single step. The algorithm uses limited backtracking to reconsider previously taken decisions. This backtracking provides the algorithm with additional possibilities for obtaining high throughput schedules with low spill code requirements for clustered architectures. We show that the proposed approach outperforms previously proposed techniques and that it is very scalable independently of the number of clusters, the number of communication buses and communication latency. The paper also includes an exploration of some parameters in the design of future clustered VLIW cores.Peer ReviewedPostprint (published version
    • …
    corecore