54,093 research outputs found

    Cluster density properties define a graph for effective pattern feature selection

    Get PDF
    Feature selection is a challenging problem that occurs in the high-dimensional data analysis of many major applications. It addresses the curse of dimensionality by determining a small set of features to represent high-dimensional data without significant or noticeable loss of information. The purpose of this study is to develop and investigate a new unsupervised feature selection method which uses the k-influence space concept and subspace learning to map features onto a weighted graph and rank them by importance according to the PageRank graph centrality measure. The graph design in this method promotes feature relevance, downgrades redundancy, and is robust to outliers and cluster imbalances. In K-Means classification experiments using the ASU feature selection testing datasets, the method produces better accuracy and normalized mutual information results than state-of-the-art unsupervised feature selection algorithms. In a further evaluation, using a dataset of over 14,000 tweets, conventional classification of features selected by the method gave better sentiment analysis results than deep learning feature selection and classification

    Towards an Efficient Discovery of the Topological Representative Subgraphs

    Full text link
    With the emergence of graph databases, the task of frequent subgraph discovery has been extensively addressed. Although the proposed approaches in the literature have made this task feasible, the number of discovered frequent subgraphs is still very high to be efficiently used in any further exploration. Feature selection for graph data is a way to reduce the high number of frequent subgraphs based on exact or approximate structural similarity. However, current structural similarity strategies are not efficient enough in many real-world applications, besides, the combinatorial nature of graphs makes it computationally very costly. In order to select a smaller yet structurally irredundant set of subgraphs, we propose a novel approach that mines the top-k topological representative subgraphs among the frequent ones. Our approach allows detecting hidden structural similarities that existing approaches are unable to detect such as the density or the diameter of the subgraph. In addition, it can be easily extended using any user defined structural or topological attributes depending on the sought properties. Empirical studies on real and synthetic graph datasets show that our approach is fast and scalable

    Fast multi-image matching via density-based clustering

    Full text link
    We consider the problem of finding consistent matches across multiple images. Previous state-of-the-art solutions use constraints on cycles of matches together with convex optimization, leading to computationally intensive iterative algorithms. In this paper, we propose a clustering-based formulation. We first rigorously show its equivalence with the previous one, and then propose QuickMatch, a novel algorithm that identifies multi-image matches from a density function in feature space. We use the density to order the points in a tree, and then extract the matches by breaking this tree using feature distances and measures of distinctiveness. Our algorithm outperforms previous state-of-the-art methods (such as MatchALS) in accuracy, and it is significantly faster (up to 62 times faster on some bechmarks), and can scale to large datasets (with more than twenty thousands features).Accepted manuscriptSupporting documentatio

    Clustering and Community Detection in Directed Networks: A Survey

    Full text link
    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges non symmetric. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of applications. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method and tool for community detection and evaluation. The goal of this paper is to offer an in-depth review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.Comment: 86 pages, 17 figures. Physics Reports Journal (To Appear
    • …
    corecore