476,132 research outputs found

    Topological cluster state quantum computing

    Full text link
    The quantum computing scheme described in Phys. Rev. Lett. 98, 190504 (2007), when viewed as a cluster state computation, features a 3-D cluster state, novel adjustable strength error correction capable of correcting general errors through the correction of Z errors only, a threshold error rate approaching 1% and low overhead arbitrarily long-range logical gates. In this work, we review the scheme in detail framing discussion solely in terms of the required 3-D cluster state and its stabilizers.Comment: 11 pages, 20 figures, v2 substantially revised and simplified to remove the need for prior exposure to cluster state quantum computin

    Architecture and noise analysis of continuous variable quantum gates using two-dimensional cluster states

    Full text link
    Due to its unique scalability potential, continuous variable quantum optics is a promising platform for large scale quantum computing and quantum simulation. In particular, very large cluster states with a two-dimensional topology that are suitable for universal quantum computing and quantum simulation can be readily generated in a deterministic manner, and routes towards fault-tolerance via bosonic quantum error-correction are known. In this article we propose a complete measurement-based quantum computing architecture for the implementation of a universal set of gates on the recently generated two-dimensional cluster states [1,2]. We analyze the performance of the various quantum gates that are executed in these cluster states as well as in other two-dimensional cluster states (the bilayer-square lattice and quad-rail lattice cluster states [3,4]) by estimating and minimizing the associated stochastic noise addition as well as the resulting gate error probability. We compare the four different states and find that, although they all allow for universal computation, the quad-rail lattice cluster state performs better than the other three states which all exhibit similar performance

    Experimental Study of Remote Job Submission and Execution on LRM through Grid Computing Mechanisms

    Full text link
    Remote job submission and execution is fundamental requirement of distributed computing done using Cluster computing. However, Cluster computing limits usage within a single organization. Grid computing environment can allow use of resources for remote job execution that are available in other organizations. This paper discusses concepts of batch-job execution using LRM and using Grid. The paper discusses two ways of preparing test Grid computing environment that we use for experimental testing of concepts. This paper presents experimental testing of remote job submission and execution mechanisms through LRM specific way and Grid computing ways. Moreover, the paper also discusses various problems faced while working with Grid computing environment and discusses their trouble-shootings. The understanding and experimental testing presented in this paper would become very useful to researchers who are new to the field of job management in Grid.Comment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    Parallel Computing on a PC Cluster

    Get PDF
    The tremendous advance in computer technology in the past decade has made it possible to achieve the performance of a supercomputer on a very small budget. We have built a multi-CPU cluster of Pentium PC capable of parallel computations using the Message Passing Interface (MPI). We will discuss the configuration, performance, and application of the cluster to our work in physics.Comment: 3 pages, uses Latex and aipproc.cl
    • …
    corecore