2,529 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Localization for Anchoritic Sensor Networks

    Full text link
    We introduce a class of anchoritic sensor networks, where communications between sensor nodes is undesirable or infeasible, e.g., due to harsh environment, energy constraints, or security considerations

    A Low-Complexity Geometric Bilateration Method for Localization in Wireless Sensor Networks and Its Comparison with Least-Squares Methods

    Get PDF
    This research presents a distributed and formula-based bilateration algorithm that can be used to provide initial set of locations. In this scheme each node uses distance estimates to anchors to solve a set of circle-circle intersection (CCI) problems, solved through a purely geometric formulation. The resulting CCIs are processed to pick those that cluster together and then take the average to produce an initial node location. The algorithm is compared in terms of accuracy and computational complexity with a Least-Squares localization algorithm, based on the Levenberg–Marquardt methodology. Results in accuracy vs. computational performance show that the bilateration algorithm is competitive compared with well known optimized localization algorithms

    Distributed on-line multidimensional scaling for self-localization in wireless sensor networks

    Full text link
    The present work considers the localization problem in wireless sensor networks formed by fixed nodes. Each node seeks to estimate its own position based on noisy measurements of the relative distance to other nodes. In a centralized batch mode, positions can be retrieved (up to a rigid transformation) by applying Principal Component Analysis (PCA) on a so-called similarity matrix built from the relative distances. In this paper, we propose a distributed on-line algorithm allowing each node to estimate its own position based on limited exchange of information in the network. Our framework encompasses the case of sporadic measurements and random link failures. We prove the consistency of our algorithm in the case of fixed sensors. Finally, we provide numerical and experimental results from both simulated and real data. Simulations issued to real data are conducted on a wireless sensor network testbed.Comment: 32 pages, 5 figures, 1 tabl

    An indoor variance-based localization technique utilizing the UWB estimation of geometrical propagation parameters

    Get PDF
    A novel localization framework is presented based on ultra-wideband (UWB) channel sounding, employing a triangulation method using the geometrical properties of propagation paths, such as time delay of arrival, angle of departure, angle of arrival, and their estimated variances. In order to extract these parameters from the UWB sounding data, an extension to the high-resolution RiMAX algorithm was developed, facilitating the analysis of these frequency-dependent multipath parameters. This framework was then tested by performing indoor measurements with a vector network analyzer and virtual antenna arrays. The estimated means and variances of these geometrical parameters were utilized to generate multiple sample sets of input values for our localization framework. Next to that, we consider the existence of multiple possible target locations, which were subsequently clustered using a Kim-Parks algorithm, resulting in a more robust estimation of each target node. Measurements reveal that our newly proposed technique achieves an average accuracy of 0.26, 0.28, and 0.90 m in line-of-sight (LoS), obstructed-LoS, and non-LoS scenarios, respectively, and this with only one single beacon node. Moreover, utilizing the estimated variances of the multipath parameters proved to enhance the location estimation significantly compared to only utilizing their estimated mean values
    • 

    corecore