38 research outputs found

    Unsupervised methods of classifying remotely sensed imges using Kohonen self-organizing maps

    Get PDF
    Orientadores: Marcio Luiz de Andrade Netto, Jose Alfredo Ferreira CostaAcompanha Anexo A: Midia com informações adicionais em CD-RTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Esta tese propõe novas metodologias de classificação não-supervisionada de imagens de sensoriamento remoto que particularmente exploram as características e propriedades do Mapa Auto-organizável de Kohonen (SOM - Self-Organizing Map). O ponto chave dos métodos de classificação propostos é realizar a análise de agrupamentos das imagens através do mapeamento produzido pelo SOM, ao invés de trabalhar diretamente com os padrões originais das cenas. Tal estratégia reduz significativamente a complexidade da análise dos dados, tornando possível a utilização de técnicas normalmente consideradas computacionalmente inviáveis para o processamento de imagens de sensoriamento remoto, como métodos de agrupamentos hierárquicos e índices de validação de agrupamentos. Diferentemente de outras abordagens, nas quais o SOM é utilizado como ferramenta de auxílio visual para a detecção de agrupamentos, nos métodos de classificação propostos, mecanismos para analisar de maneira automática o arranjo de neurônios de um SOM treinado são aplicados e aprimorados com o objetivo de encontrar as melhores partições para os conjuntos de dados das imagens. Baseando-se nas propriedades estatísticas do SOM, modificações nos cálculos de índices de validação agrupamentos são propostas com o objetivo de reduzir o custo computacional do processo de classificação das imagens. Técnicas de análise de textura em imagens são aplicadas para avaliar e filtrar amostras de treinamento e/ou protótipos do SOM que correspondem a regiões de transição entre classes de cobertura terrestre. Informações espaciais a respeito dos protótipos do SOM, além das informações de distância multiespectral, também são aplicadas em critérios de fusão de agrupamentos procurando facilitar a discriminação de classes de cobertura terrestre que apresentam alto grau de similaridade espectral. Resultados experimentais mostram que os métodos de classificação propostos apresentam vantagens significativas em relação às técnicas de classificação não-supervisionada mais freqüentemente utilizadas na área de sensoriamento remoto.Abstract: This thesis proposes new methods of unsupervised classification for remotely sensed images which particularly exploit the characteristics and properties of the Kohonen Self-Organizing Map (SOM). The key point is to execute the clustering process through a set of prototypes of SOM instead of analyzing directly the original patterns of the image. This strategy significantly reduces the complexity of data analysis, making it possible to use techniques that have not usually been considered computationally viable for processing remotely sensed images, such as hierarchical clustering methods and cluster validation indices. Unlike other approaches in which SOM is used as a visual tool for detection of clusters, the proposed classification methods automatically analyze the neurons grid of a trained SOM in order to find better partitions for data sets of images. Based on the statistical properties of the SOM, clustering validation indices calculated in a modified manner are proposed with the aim of reducing the computational cost of the classification process of images. Image texture analysis techniques are applied to evaluate and filter training samples and/or prototypes of the SOM that correspond to transition regions between land cover classes. Spatial information about the prototypes of the SOM, in addition to multiespectral distance information, are also incorporated in criteria for merging clusters with aim to facilitate the discrimination of land cover classes which have high spectral similarity. Experimental results show that the proposed classification methods present significant advantages when compared to unsupervised classification techniques frequently used in remote sensing.DoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Unsupervised segmentation of natural images based on the adaptive integration of colour-texture descriptors

    Get PDF

    Geomatics in support of the Common Agriculture Policy

    Get PDF
    The 2009 Annual Conference was the 15th organised by GeoCAP action of the Joint Research Centre in ISPRA. It was jointly organised with the Italian Agenzia per le erogazioni in agricoltura (AGEA, coordinating organism of the Italian agricultural paying agencies). The Conference covered the 2009 Control with Remote sensing campaign activities and ortho-imagery use in all the CAP management and control procedures. There has been a specific focus on the Land Parcel Identification Systems quality assessment process. The conference was structured over three days ¿ 18th to 20th November. The first day was mainly dedicated to future Common Agriculture Policy perspectives and futures challenges in Agriculture. The second was shared in technical parallel sessions addressing topics like: LPIS Quality Assurance and geodatabases features; new sensors, new software, and their use within the CAP; and Good Agriculture and Environmental Conditions (GAEC) control methods and implementing measures. The last day was dedicated to the review of the 2009 CwRS campaign and the preparation of the 2010 one. The presentations were made available on line, and this publication represents the best presentations judged worthy of inclusion in a conference proceedings aimed at recording the state of the art of technology and practice of that time.JRC.DG.G.3-Monitoring agricultural resource

    Extraction and representation of semantic information in digital media

    Get PDF

    An intelligent classification system for land use and land cover mapping using spaceborne remote sensing and GIS

    Get PDF
    The objectives of this study were to experiment with and extend current methods of Synthetic Aperture Rader (SAR) image classification, and to design and implement a prototype intelligent remote sensing image processing and classification system for land use and land cover mapping in wet season conditions in Bangladesh, which incorporates SAR images and other geodata. To meet these objectives, the problem of classifying the spaceborne SAR images, and integrating Geographic Information System (GIS) data and ground truth data was studied first. In this phase of the study, an extension to traditional techniques was made by applying a Self-Organizing feature Map (SOM) to include GIS data with the remote sensing data during image segmentation. The experimental results were compared with those of traditional statistical classifiers, such as Maximum Likelihood, Mahalanobis Distance, and Minimum Distance classifiers. The performances of the classifiers were evaluated in terms of the classification accuracy with respect to the collected real-time ground truth data. The SOM neural network provided the highest overall accuracy when a GIS layer of land type classification (with respect to the period of inundation by regular flooding) was used in the network. Using this method, the overall accuracy was around 15% higher than the previously mentioned traditional classifiers. It also achieved higher accuracies for more classes in comparison to the other classifiers. However, it was also observed that different classifiers produced better accuracy for different classes. Therefore, the investigation was extended to consider Multiple Classifier Combination (MCC) techniques, which is a recently emerging research area in pattern recognition. The study has tested some of these techniques to improve the classification accuracy by harnessing the goodness of the constituent classifiers. A Rule-based Contention Resolution method of combination was developed, which exhibited an improvement in the overall accuracy of about 2% in comparison to its best constituent (SOM) classifier. The next phase of the study involved the design of an architecture for an intelligent image processing and classification system (named ISRIPaC) that could integrate the extended methodologies mentioned above. Finally, the architecture was implemented in a prototype and its viability was evaluated using a set of real data. The originality of the ISRIPaC architecture lies in the realisation of the concept of a complete system that can intelligently cover all the steps of image processing classification and utilise standardised metadata in addition to a knowledge base in determining the appropriate methods and course of action for the given task. The implemented prototype of the ISRIPaC architecture is a federated system that integrates the CLIPS expert system shell, the IDRISI Kilimanjaro image processing and GIS software, and the domain experts' knowledge via a control agent written in Visual C++. It starts with data assessment and pre-processing and ends up with image classification and accuracy assessment. The system is designed to run automatically, where the user merely provides the initial information regarding the intended task and the source of available data. The system itself acquires necessary information about the data from metadata files in order to make decisions and perform tasks. The test and evaluation of the prototype demonstrates the viability of the proposed architecture and the possibility of extending the system to perform other image processing tasks and to use different sources of data. The system design presented in this study thus suggests some directions for the development of the next generation of remote sensing image processing and classification systems
    corecore