24,150 research outputs found

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation

    Full text link
    We propose in this paper an exploratory analysis algorithm for functional data. The method partitions a set of functions into KK clusters and represents each cluster by a simple prototype (e.g., piecewise constant). The total number of segments in the prototypes, PP, is chosen by the user and optimally distributed among the clusters via two dynamic programming algorithms. The practical relevance of the method is shown on two real world datasets

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Self-Organizing Time Map: An Abstraction of Temporal Multivariate Patterns

    Full text link
    This paper adopts and adapts Kohonen's standard Self-Organizing Map (SOM) for exploratory temporal structure analysis. The Self-Organizing Time Map (SOTM) implements SOM-type learning to one-dimensional arrays for individual time units, preserves the orientation with short-term memory and arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM attempts thus twofold topology preservation, where the horizontal direction preserves time topology and the vertical direction data topology. This enables discovering the occurrence and exploring the properties of temporal structural changes in data. For representing qualities and properties of SOTMs, we adapt measures and visualizations from the standard SOM paradigm, as well as introduce a measure of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world setting is shown on poverty, welfare and development indicators

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Adaptive Multilevel Cluster Analysis by Self-Organizing Box Maps

    Get PDF
    Title and table of contents 1 Introduction 3 1\. Cluster Analysis in High-Dimensional Data 7 1.1 Modeling 8 1.2 Problem reduction via representative clustering 13 1.3 Efficient cluster description 16 1.4 How many clusters? 21 2\. Decomposition 23 2.1 General Definition 23 2.2 Approximate box decomposition 25 2.3 Decomposition based representative clustering 27 2.4 Efficient cluster description via approximate box decomposition 34 3\. Adaptive Decomposition by Self-Organized Neural Networks 41 3.1 Self-Organizing Maps (SOM) 42 3.2 Self-Organizing Box Maps (SOBM) 44 3.3 Comparison SOM-SOBM 53 3.4 Computational complexity 56 3.5 Practical extensions 57 4\. Multilevel Representative Clustering 59 4.1 General approach 59 4.2 Adaptive decomposition refinement 60 4.3 Approach based on Perron Cluster analysis 61 5\. Applications 73 5.1 Conformational Analysis of biomolecules 73 5.2 Cluster analysis of insurance customers 87 Conclusion 91 Appendix 93 Symbols 95 Bibliography 97The aim of this thesis is a fruitful combination of Perron Cluster analysis and self-organized neural networks within an adaptive multilevel clustering approach that allows a fast and robust identification and an efficient description of clusters in high-dimensional data. In a general variant that needs a correct number of clusters k as an input, this new approach is relevant for a great number of cluster problems since it uses a cluster model that covers geometrically, but also dynamically based clusters. Its essential part is a method called representative clustering that guarantees the applicability to large cluster problems: Based on an adaptive decomposition of the object space via self-organized neural networks, the original problem is reduced to a smaller cluster problem. The general clustering approach can be extended by Perron Cluster analysis so that it can be used for large reversible dynamic cluster problems, even if a correct number of clusters k is unknown a priori. The basic application of the extended clustering approach is the conformational analysis of biomolecules, with great impact in the field of Drug Design. Here, for the first time the analysis of practically relevant and large molecules like an HIV protease inhibitor becomes possible.Als Cluster Analyse bezeichnet man den Prozess der Suche und Beschreibung von Gruppen (Clustern) von Objekten, so daß die Objekte innerhalb eines Clusters bezüglich eines gegebenen Maßes maximal homogen sind. Die Homogenität der Objekte hängt dabei direkt oder indirekt von den Ausprägungen ab, die sie für eine Anzahl festgelegter Attribute besitzen. Die Suche nach Clustern läßt sich somit als Optimierungsproblem auffassen, wobei die Anzahl der Cluster vorher bekannt sein muß. Wenn die Anzahl der Objekte und der Attribute groß ist, spricht man von komplexen, hoch-dimensionalen Cluster Problemen. In diesem Fall ist eine direkte Optimierung zu aufwendig, und man benötigt entweder heuristische Optimierungsverfahren oder Methoden zur Reduktion der Komplexität. In der Vergangenheit wurden in der Forschung fast ausschließlich Verfahren für geometrisch basierte Clusterprobleme entwickelt. Bei diesen Problemen lassen sich die Objekte als Punkte in einem von den Attributen aufgespannten metrischen Raum modellieren; das verwendete Homogenitätsmaß basiert auf der geometrischen Distanz der den Objekten zugeordneten Punkte. Insbesondere zur Bestimmung sogenannter metastabiler Cluster sind solche Verfahren aber offensichtlich nicht geeignet, da metastabile Cluster, die z.B. in der Konformationsanalyse von Biomolekülen von zentraler Bedeutung sind, nicht auf einer geometrischen, sondern einer dynamischen Ähnlichkeit beruhen. In der vorliegenden Arbeit wird ein allgemeines Clustermodell vorgeschlagen, das zur Modellierung geometrischer, wie auch dynamischer Clusterprobleme geeignet ist. Es wird eine Methode zur Komplexitätsreduktion von Clusterproblemen vorgestellt, die auf einer zuvor generierten Komprimierung der Objekte innerhalb des Datenraumes basiert. Dabei wird bewiesen, daß eine solche Reduktion die Clusterstruktur nicht zerstört, wenn die Komprimierung fein genug ist. Mittels selbstorganisierter neuronaler Netze lassen sich geeignete Komprimierungen berechnen. Um eine signifikante Komplexitätsreduktion ohne Zerstörung der Clusterstruktur zu erzielen, werden die genannten Methoden in ein mehrstufiges Verfahren eingebettet. Da neben der Identifizierung der Cluster auch deren effiziente Beschreibung notwendig ist, wird ferner eine spezielle Art der Komprimierung vorgestellt, der eine Boxdiskretisierung des Datenraumes zugrunde liegt. Diese ermöglicht die einfache Generierung von regelbasierten Clusterbeschreibungen. Für einen speziellen Typ von Homogenitätsfunktionen, die eine stochastische Eigenschaft besitzen, wird das mehrstufige Clusterverfahren um eine Perroncluster Analyse erweitert. Dadurch wird die Anzahl der Cluster, im Gegensatz zu herkömmlichen Verfahren, nicht mehr als Eingabeparameter benötigt. Mit dem entwickelten Clusterverfahren kann erstmalig eine computergestützte Konformationsanalyse großer, für die Praxis relevanter Biomoleküle durchgeführt werden. Am Beispiel des HIV Protease Inhibitors VX-478 wird dies detailliert beschrieben
    corecore