615 research outputs found

    Cloud-Based Realtime Robotic Visual SLAM

    Get PDF
    Abstract-Prior work has shown that Visual SLAM (VSLAM) algorithms can successfully be used for realtime processing on local robots. As the data processing requirements increase, due to image size or robot velocity constraints, local processing may no longer be practical. Offloading the VSLAM processing to systems running in a cloud deployment of Robot Operating System (ROS) is proposed as a method for managing increasing processing constraints. The traditional bottleneck with VSLAM performing feature identification and matching across a large database. In this paper, we present a system and algorithms to reduce computational time and storage requirements for feature identification and matching components of VSLAM by offloading the processing to a cloud comprised of a cluster of compute nodes. We compare this new approach to our prior approach where only the local resources of the robot were used, and examine the increase in throughput made possible with this new processing architecture

    Efficient scene simulation for robust monte carlo localization using an RGB-D camera

    Get PDF
    This paper presents Kinect Monte Carlo Localization (KMCL), a new method for localization in three dimensional indoor environments using RGB-D cameras, such as the Microsoft Kinect. The approach makes use of a low fidelity a priori 3-D model of the area of operation composed of large planar segments, such as walls and ceilings, which are assumed to remain static. Using this map as input, the KMCL algorithm employs feature-based visual odometry as the particle propagation mechanism and utilizes the 3-D map and the underlying sensor image formation model to efficiently simulate RGB-D camera views at the location of particle poses, using a graphical processing unit (GPU). The generated 3D views of the scene are then used to evaluate the likelihood of the particle poses. This GPU implementation provides a factor of ten speedup over a pure distance-based method, yet provides comparable accuracy. Experimental results are presented for five different configurations, including: (1) a robotic wheelchair, (2) a sensor mounted on a person, (3) an Ascending Technologies quadrotor, (4) a Willow Garage PR2, and (5) an RWI B21 wheeled mobile robot platform. The results demonstrate that the system can perform robust localization with 3D information for motions as fast as 1.5 meters per second. The approach is designed to be applicable not just for robotics but other applications such as wearable computing

    Perception-aware Path Planning

    Full text link
    In this paper, we give a double twist to the problem of planning under uncertainty. State-of-the-art planners seek to minimize the localization uncertainty by only considering the geometric structure of the scene. In this paper, we argue that motion planning for vision-controlled robots should be perception aware in that the robot should also favor texture-rich areas to minimize the localization uncertainty during a goal-reaching task. Thus, we describe how to optimally incorporate the photometric information (i.e., texture) of the scene, in addition to the the geometric one, to compute the uncertainty of vision-based localization during path planning. To avoid the caveats of feature-based localization systems (i.e., dependence on feature type and user-defined thresholds), we use dense, direct methods. This allows us to compute the localization uncertainty directly from the intensity values of every pixel in the image. We also describe how to compute trajectories online, considering also scenarios with no prior knowledge about the map. The proposed framework is general and can easily be adapted to different robotic platforms and scenarios. The effectiveness of our approach is demonstrated with extensive experiments in both simulated and real-world environments using a vision-controlled micro aerial vehicle.Comment: 16 pages, 20 figures, revised version. Conditionally accepted for IEEE Transactions on Robotic

    Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots

    Full text link
    Safety is paramount for mobile robotic platforms such as self-driving cars and unmanned aerial vehicles. This work is devoted to a task that is indispensable for safety yet was largely overlooked in the past -- detecting obstacles that are of very thin structures, such as wires, cables and tree branches. This is a challenging problem, as thin objects can be problematic for active sensors such as lidar and sonar and even for stereo cameras. In this work, we propose to use video sequences for thin obstacle detection. We represent obstacles with edges in the video frames, and reconstruct them in 3D using efficient edge-based visual odometry techniques. We provide both a monocular camera solution and a stereo camera solution. The former incorporates Inertial Measurement Unit (IMU) data to solve scale ambiguity, while the latter enjoys a novel, purely vision-based solution. Experiments demonstrated that the proposed methods are fast and able to detect thin obstacles robustly and accurately under various conditions.Comment: Appeared at IEEE CVPR 2017 Workshop on Embedded Visio

    Continuous fusion of motion data using an axis-angle rotation representation with uniform B-spline

    Get PDF
    The fusion of motion data is key in the fields of robotic and automated driving. Most existing approaches are filter-based or pose-graph-based. By using filter-based approaches, parameters should be set very carefully and the motion data can usually only be fused in a time forward direction. Pose-graph-based approaches can fuse data in time forward and backward directions. However, pre-integration is needed by applying measurements from inertial measurement units. Additionally, both approaches only provide discrete fusion results. In this work, we address this problem and present a uniform B-spline-based continuous fusion approach, which can fuse motion measurements from an inertial measurement unit and pose data from other localization systems robustly, accurately and efficiently. In our continuous fusion approach, an axis-angle is applied as our rotation representation method and uniform B-spline as the back-end optimization base. Evaluation results performed on the real world data show that our approach provides accurate, robust and continuous fusion results, which again supports our continuous fusion concept

    A Depth Space Approach for Evaluating Distance to Objects -- with Application to Human-Robot Collision Avoidance

    Get PDF
    We present a novel approach to estimate the distance between a generic point in the Cartesian space and objects detected with a depth sensor. This information is crucial in many robotic applications, e.g., for collision avoidance, contact point identification, and augmented reality. The key idea is to perform all distance evaluations directly in the depth space. This allows distance estimation by considering also the frustum generated by the pixel on the depth image, which takes into account both the pixel size and the occluded points. Different techniques to aggregate distance data coming from multiple object points are proposed. We compare the Depth space approach with the commonly used Cartesian space or Configuration space approaches, showing that the presented method provides better results and faster execution times. An application to human-robot collision avoidance using a KUKA LWR IV robot and a Microsoft Kinect sensor illustrates the effectiveness of the approach

    Gaze-contingent perceptually enabled interactions in the operating theatre.

    Get PDF
    PURPOSE: Improved surgical outcome and patient safety in the operating theatre are constant challenges. We hypothesise that a framework that collects and utilises information -especially perceptually enabled ones-from multiple sources, could help to meet the above goals. This paper presents some core functionalities of a wider low-cost framework under development that allows perceptually enabled interaction within the surgical environment. METHODS: The synergy of wearable eye-tracking and advanced computer vision methodologies, such as SLAM, is exploited. As a demonstration of one of the framework's possible functionalities, an articulated collaborative robotic arm and laser pointer is integrated and the set-up is used to project the surgeon's fixation point in 3D space. RESULTS: The implementation is evaluated over 60 fixations on predefined targets, with distances between the subject and the targets of 92-212 cm and between the robot and the targets of 42-193 cm. The median overall system error is currently 3.98 cm. Its real-time potential is also highlighted. CONCLUSIONS: The work presented here represents an introduction and preliminary experimental validation of core functionalities of a larger framework under development. The proposed framework is geared towards a safer and more efficient surgical theatre
    • …
    corecore