127 research outputs found

    Evaluation Of Facial Soft Tissue Changes In Excessive Gingival Display Cases After Le Forte I Maxillary Impaction Surgery Using 3D Facial Surface Laser Scanner

    Get PDF
    Introduction: Facial soft tissue changes in relation to hard tissue movements after orthognathic surgery cases is always of concern to patients , surgical and orthodontics teams. The aim of the present study was to assess facial soft tissue changes and stability using 3D facial laser scanner after orthognathic surgery Le Forte I maxillary impaction in excessive gingival display patients. Methods: The subjects consisted of 12 patients with skeletal vertical maxillary excess (VME) causing an aesthetic concern to the patients in the form of “Gummy smile”, who underwent LeFort I osteotomy with maxillary impaction, Three-dimensional images of the patients were acquired with a 3D laser scanner preoperatively and postoperatively. The changes in facial soft tissue were detected using a colour coded map for analysis. Results: Significant change was recorded in the upper lip, alar base, nasolabial fold and nasal tip areas, without specification of this change in direction. Conclusions: The 3D images captured using the laser scanner in this study can be a useful tool for communication with both patients and professionals but cannot be relied upon solely for accurate analysis of the facial soft tissue changes. The colour coded map analysis cannot be relied upon solely as a method of analysis as it lacks an important aspect of the change which is the direction

    The building of an accurate 3D physical model of the skull and maxillary dentition.

    Get PDF
    3D rapid prototyping is a useful tool for the production of 3D models of the human skull taken from cone beam computed tomography scans. Although the accuracy of these models is acceptable the dentition is distorted. The aim of the study is to replace the inaccurately reproduced dental arch of a 3D printed skull model with accurate, correctly proportioned plaster teeth, obtained from a dental impression. 6 dried human skulls were scanned using a Faro laser arm scanner. Impressions of the dentition were taken using silicone impression material. Plaster dental casts were produced using dental stone. Following removal of the inaccurate dentition from the 3D printed skull model, the corresponding plaster dental cast was attached to the 3D printed skull model using a custom designed technique. The six modified 3D printed skull models with replaced dentition were laser scanned using a Faro arm. VRmesh software was used to superimpose the laser scanned skull images

    Physical and statistical shape modelling in craniomaxillofacial surgery: a personalised approach for outcome prediction

    Get PDF
    Orthognathic surgery involves repositioning of the jaw bones to restore face function and shape for patients who require an operation as a result of a syndrome, due to growth disturbances in childhood or after trauma. As part of the preoperative assessment, three-dimensional medical imaging and computer-assisted surgical planning help to improve outcomes, and save time and cost. Computer-assisted surgical planning involves visualisation and manipulation of the patient anatomy and can be used to aid objective diagnosis, patient communication, outcome evaluation, and surgical simulation. Despite the benefits, the adoption of three-dimensional tools has remained limited beyond specialised hospitals and traditional two-dimensional cephalometric analysis is still the gold standard. This thesis presents a multidisciplinary approach to innovative surgical simulation involving clinical patient data, medical image analysis, engineering principles, and state-of-the-art machine learning and computer vision algorithms. Two novel three-dimensional computational models were developed to overcome the limitations of current computer-assisted surgical planning tools. First, a physical modelling approach – based on a probabilistic finite element model – provided patient-specific simulations and, through training and validation, population-specific parameters. The probabilistic model was equally accurate compared to two commercial programs whilst giving additional information regarding uncertainties relating to the material properties and the mismatch in bone position between planning and surgery. Second, a statistical modelling approach was developed that presents a paradigm shift in its modelling formulation and use. Specifically, a 3D morphable model was constructed from 5,000 non-patient and orthognathic patient faces for fully-automated diagnosis and surgical planning. Contrary to traditional physical models that are limited to a finite number of tests, the statistical model employs machine learning algorithms to provide the surgeon with a goal-driven patient-specific surgical plan. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life

    Optimization of computer-assisted intraoperative guidance for complex oncological procedures

    Get PDF
    MenciĂłn Internacional en el tĂ­tulo de doctorThe role of technology inside the operating room is constantly increasing, allowing surgical procedures previously considered impossible or too risky due to their complexity or limited access. These reliable tools have improved surgical efficiency and safety. Cancer treatment is one of the surgical specialties that has benefited most from these techniques due to its high incidence and the accuracy required for tumor resections with conservative approaches and clear margins. However, in many cases, introducing these technologies into surgical scenarios is expensive and entails complex setups that are obtrusive, invasive, and increase the operative time. In this thesis, we proposed convenient, accessible, reliable, and non-invasive solutions for two highly complex regions for tumor resection surgeries: pelvis and head and neck. We explored how the introduction of 3D printing, surgical navigation, and augmented reality in these scenarios provided high intraoperative precision. First, we presented a less invasive setup for osteotomy guidance in pelvic tumor resections based on small patient-specific instruments (PSIs) fabricated with a desktop 3D printer at a low cost. We evaluated their accuracy in a cadaveric study, following a realistic workflow, and obtained similar results to previous studies with more invasive setups. We also identified the ilium as the region more prone to errors. Then, we proposed surgical navigation using these small PSIs for image-to-patient registration. Artificial landmarks included in the PSIs substitute the anatomical landmarks and the bone surface commonly used for this step, which require additional bone exposure and is, therefore, more invasive. We also presented an alternative and more convenient installation of the dynamic reference frame used to track the patient movements in surgical navigation. The reference frame is inserted in a socket included in the PSIs and can be attached and detached without losing precision and simplifying the installation. We validated the setup in a cadaveric study, evaluating the accuracy and finding the optimal PSI configuration in the three most common scenarios for pelvic tumor resection. The results demonstrated high accuracy, where the main source of error was again incorrect placements of PSIs in regular and homogeneous regions such as the ilium. The main limitation of PSIs is the guidance error resulting from incorrect placements. To overcome this issue, we proposed augmented reality as a tool to guide PSI installation in the patient’s bone. We developed an application for smartphones and HoloLens 2 that displays the correct position intraoperatively. We measured the placement errors in a conventional and a realistic phantom, including a silicone layer to simulate tissue. The results demonstrated a significant reduction of errors with augmented reality compared to freehand placement, ensuring an installation of the PSI close to the target area. Finally, we proposed three setups for surgical navigation in palate tumor resections, using optical trackers and augmented reality. The tracking tools for the patient and surgical instruments were fabricated with low-cost desktop 3D printers and designed to provide less invasive setups compared to previous solutions. All setups presented similar results with high accuracy when tested in a 3D-printed patient-specific phantom. They were then validated in the real surgical case, and one of the solutions was applied for intraoperative guidance. Postoperative results demonstrated high navigation accuracy, obtaining optimal surgical outcomes. The proposed solution enabled a conservative surgical approach with a less invasive navigation setup. To conclude, in this thesis we have proposed new setups for intraoperative navigation in two complex surgical scenarios for tumor resection. We analyzed their navigation precision, defining the optimal configurations to ensure accuracy. With this, we have demonstrated that computer-assisted surgery techniques can be integrated into the surgical workflow with accessible and non-invasive setups. These results are a step further towards optimizing the procedures and continue improving surgical outcomes in complex surgical scenarios.Programa de Doctorado en Ciencia y TecnologĂ­a BiomĂ©dica por la Universidad Carlos III de MadridPresidente: RaĂșl San JosĂ© EstĂ©par.- Secretario: Alba GonzĂĄlez Álvarez.- Vocal: Simon Droui

    Craniofacial Growth Series Volume 56

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/153991/1/56th volume CF growth series FINAL 02262020.pdfDescription of 56th volume CF growth series FINAL 02262020.pdf : Proceedings of the 46th Annual Moyers Symposium and 44th Moyers Presymposiu

    Simulation Guided Navigation in cranio-maxillo-facial surgery: a new approach to improve intraoperative three-dimensional accuracy and reproducibility during surgery.

    Get PDF
    The aim of this PhD thesis " Simulation Guided Navigation in cranio- maxillo- facial surgery : a new approach to Improve intraoperative three-dimensional accuracy and reproducibility during surgery ." was at the center of its attention the various applications of a method introduced by our School in 2010 and has as its theme the increase of interest of reproducibility of surgical programs through methods that in whole or in part are using intraoperative navigation. It was introduced in Orthognathic Surgery Validation a new method for the interventions carried out according to the method Simulation Guided Navigation in facial deformities ; was then analyzed the method of three-dimensional control of the osteotomies through the use of templates and cutting of plates using the method precontoured CAD -CAM and laser sintering . It was finally proceeded to introduce the method of piezonavigated surgery in the various branches of maxillofacial surgery . These studies have been subjected to validation processes and the results are presented .Obiettivo di questa tesi di Dottorato “Simulation Guided Navigation in cranio-maxillo-facial surgery: a new approach to improve intraoperative three-dimensional accuracy and reproducibility during surgery.” ha avuto al centro delle proprie attenzioni le varie applicazioni di una metodica introdotta dalla ns. Scuola nel 2010 e che ha come tema di interesse l’aumento delle riproducibilità dei programmi chirurgici mediante metodiche che in toto o in parte utilizzano il navigatore intraoperatorio. Si ù introdotto in Chirurgia Ortognatica un nuovo Metodo di Validazione per gli interventi effettuati secondo la metodica Simulation Guided Navigation nelle malformazioni facciali ; si ù poi analizzata la metodica di controllo tridimensionale delle osteotomie mediante l’utilizzo delle dime di taglio e delle placche premodellate mediante metodica CAD-CAM e sinterizzazione laser. Si ù infine proceduto ad introdurre la metodica di chirurgia piezonavigata alle varie branche di chirurgia maxillo-facciale. Tali studi sono stati sottoposti a processi di validazione ed i risultati vengono presentati

    Issues in Contemporary Orthodontics

    Get PDF
    Issues in Contemporary Orthodontics is a contribution to the ongoing debate in orthodontics, a discipline of continuous evolution, drawing from new technology and collective experience, to better meet the needs of students, residents, and practitioners of orthodontics. The book provides a comprehensive view of the major issues in orthodontics that have featured in recent debates. Abroad variety of topics is covered, including the impact of malocclusion, risk management and treatment, and innovation in orthodontics

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Three dimensional study to quantify the relationship between facial hard and soft tissue movement as a result of orthognathic surgery

    Get PDF
    Introduction Prediction of soft tissue changes following orthognathic surgery has been frequently attempted in the past decades. It has gradually progressed from the classic “cut and paste” of photographs to the computer assisted 2D surgical prediction planning; and finally, comprehensive 3D surgical planning was introduced to help surgeons and patients to decide on the magnitude and direction of surgical movements as well as the type of surgery to be considered for the correction of facial dysmorphology. A wealth of experience was gained and numerous published literature is available which has augmented the knowledge of facial soft tissue behaviour and helped to improve the ability to closely simulate facial changes following orthognathic surgery. This was particularly noticed following the introduction of the three dimensional imaging into the medical research and clinical applications. Several approaches have been considered to mathematically predict soft tissue changes in three dimensions, following orthognathic surgery. The most common are the Finite element model and Mass tensor Model. These were developed into software packages which are currently used in clinical practice. In general, these methods produce an acceptable level of prediction accuracy of soft tissue changes following orthognathic surgery. Studies, however, have shown a limited prediction accuracy at specific regions of the face, in particular the areas around the lips. Aims The aim of this project is to conduct a comprehensive assessment of hard and soft tissue changes following orthognathic surgery and introduce a new method for prediction of facial soft tissue changes.   Methodology The study was carried out on the pre- and post-operative CBCT images of 100 patients who received their orthognathic surgery treatment at Glasgow dental hospital and school, Glasgow, UK. Three groups of patients were included in the analysis; patients who underwent Le Fort I maxillary advancement surgery; bilateral sagittal split mandibular advancement surgery or bimaxillary advancement surgery. A generic facial mesh was used to standardise the information obtained from individual patient’s facial image and Principal component analysis (PCA) was applied to interpolate the correlations between the skeletal surgical displacement and the resultant soft tissue changes. The identified relationship between hard tissue and soft tissue was then applied on a new set of preoperative 3D facial images and the predicted results were compared to the actual surgical changes measured from their post-operative 3D facial images. A set of validation studies was conducted. To include: ‱ Comparison between voxel based registration and surface registration to analyse changes following orthognathic surgery. The results showed there was no statistically significant difference between the two methods. Voxel based registration, however, showed more reliability as it preserved the link between the soft tissue and skeletal structures of the face during the image registration process. Accordingly, voxel based registration was the method of choice for superimposition of the pre- and post-operative images. The result of this study was published in a refereed journal. ‱ Direct DICOM slice landmarking; a novel technique to quantify the direction and magnitude of skeletal surgical movements. This method represents a new approach to quantify maxillary and mandibular surgical displacement in three dimensions. The technique includes measuring the distance of corresponding landmarks digitized directly on DICOM image slices in relation to three dimensional reference planes. The accuracy of the measurements was assessed against a set of “gold standard” measurements extracted from simulated model surgery. The results confirmed the accuracy of the method within 0.34mm. Therefore, the method was applied in this study. The results of this validation were published in a peer refereed journal. ‱ The use of a generic mesh to assess soft tissue changes using stereophotogrammetry. The generic facial mesh played a major role in the soft tissue dense correspondence analysis. The conformed generic mesh represented the geometrical information of the individual’s facial mesh on which it was conformed (elastically deformed). Therefore, the accuracy of generic mesh conformation is essential to guarantee an accurate replica of the individual facial characteristics. The results showed an acceptable overall mean error of the conformation of generic mesh 1 mm. The results of this study were accepted for publication in peer refereed scientific journal. Skeletal tissue analysis was performed using the validated “Direct DICOM slices landmarking method” while soft tissue analysis was performed using Dense correspondence analysis. The analysis of soft tissue was novel and produced a comprehensive description of facial changes in response to orthognathic surgery. The results were accepted for publication in a refereed scientific Journal. The main soft tissue changes associated with Le Fort I were advancement at the midface region combined with widening of the paranasal, upper lip and nostrils. Minor changes were noticed at the tip of the nose and oral commissures. The main soft tissue changes associated with mandibular advancement surgery were advancement and downward displacement of the chin and lower lip regions, limited widening of the lower lip and slight reversion of the lower lip vermilion combined with minimal backward displacement of the upper lip were recorded. Minimal changes were observed on the oral commissures. The main soft tissue changes associated with bimaxillary advancement surgery were generalized advancement of the middle and lower thirds of the face combined with widening of the paranasal, upper lip and nostrils regions. In Le Fort I cases, the correlation between the changes of the facial soft tissue and the skeletal surgical movements was assessed using PCA. A statistical method known as ’Leave one out cross validation’ was applied on the 30 cases which had Le Fort I osteotomy surgical procedure to effectively utilize the data for the prediction algorithm. The prediction accuracy of soft tissue changes showed a mean error ranging between (0.0006mm±0.582) at the nose region to (-0.0316mm±2.1996) at the various facial regions

    Combining Surgical Navigation and 3D Printing for Less Invasive Pelvic Tumor Resections

    Get PDF
    Surgical interventions for musculoskeletal tumor resection are particularly challenging in the pelvic region due to their anatomical complexity and proximity to vital structures. Several techniques, such as surgical navigation or patient-specific instruments (PSIs), have been introduced to ensure accurate resection margins. However, their inclusion usually modifies the surgical approach making it more invasive. In this study, we propose to combine both techniques to reduce this invasiveness while improving the precision of the intervention. PSIs are used for image-to-patient registration and the installation of the navigation’s reference frame. We tested and validated the proposed setup in a realistic surgical scenario with six cadavers (12 hemipelvis). The data collected during the experiment allowed us to study different resection scenarios, identifying the patient-specific instrument configurations that optimize navigation accuracy. The mean values obtained for maximum osteotomy deviation or MOD (maximum distance between the planned and actual osteotomy for each simulated scenario) were as follows: for ilium resections, 5.9 mm in the iliac crest and 1.65 mm in the supra-acetabular region, and for acetabulum resections, 3.44 mm, 1.88 mm, and 1.97 mm in the supra-acetabular, ischial and pubic regions, respectively. Additionally, those cases with image-to-patient registration error below 2 mm ensured MODs of 2 mm or lower. Our results show how combining several PSIs leads to low navigation errors and high precision while providing a less invasive surgical approach.This work was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, and European Regional Development Fund ‘‘Una manera de hacer Europa,’’ under Project PI18/01625.Publicad
    • 

    corecore