2,185 research outputs found

    A disaster-resilient multi-content optical datacenter network architecture

    Get PDF
    Cloud services based on datacenter networks are becoming very important. Optical networks are well suited to meet the demands set by the high volume of traffic between datacenters, given their high bandwidth and low-latency characteristics. In such networks, path protection against network failures is generally ensured by providing a backup path to the same destination, which is link-disjoint to the primary path. This protection fails to protect against disasters covering an area which disrupts both primary and backup resources. Also, content/service protection is a fundamental problem in datacenter networks, as the failure of a single datacenter should not cause the disappearance of a specific content/service from the network. Content placement, routing and protection of paths and content are closely related to one another, so the interaction among these should be studied together. In this work, we propose an integrated ILP formulation to design an optical datacenter network, which solves all the above-mentioned problems simultaneously. We show that our disaster protection scheme exploiting anycasting provides more protection, but uses less capacity, than dedicated single-link protection. We also show that a reasonable number of datacenters and selective content replicas with intelligent network design can provide survivability to disasters while supporting user demands

    Survivable Cloud Networking Services

    Get PDF
    Cloud computing paradigms are seeing very strong traction today and are being propelled by advances in multi-core processor, storage, and high-bandwidth networking technologies. Now as this growth unfolds, there is a growing need to distribute cloud services over multiple data-center sites in order to improve speed, responsiveness, as well as reliability. Overall, this trend is pushing the need for virtual network (VN) embedding support at the underlying network layer. Moreover, as more and more mission-critical end-user applications move to the cloud, associated VN survivability concerns are also becoming a key requirement in order to guarantee user service level agreements. Overall, several different types of survivable VN embedding schemes have been developed in recent years. Broadly, these schemes offer resiliency guarantees by pre-provisioning backup resources at service setup time. However, most of these solutions are only geared towards handling isolated single link or single node failures. As such, these designs are largely ineffective against larger regional stressors that can result in multiple system failures. In particular, many cloud service providers are very concerned about catastrophic disaster events such as earthquakes, floods, hurricanes, cascading power outages, and even malicious weapons of mass destruction attacks. Hence there is a pressing need to develop more robust cloud recovery schemes for disaster recovery that leverage underlying distributed networking capabilities. In light of the above, this dissertation proposes a range of solutions to address cloud networking services recovery under multi-failure stressors. First, a novel failure region-disjoint VN protection scheme is proposed to achieve improved efficiency for pre-provisioned protection. Next, enhanced VN mapping schemes are studied with probabilistic considerations to minimize risk for VN requests under stochastic failure scenarios. Finally, novel post-fault VN restoration schemes are also developed to provide viable last-gap recovery mechanisms using partial and full VN remapping strategies. The performance of these various solutions is evaluated using discrete event simulation and is also compared to existing strategies

    Critical Infrastructures

    Get PDF
    • 

    corecore