766 research outputs found

    Performance Evaluation of Smart Decision Support Systems on Healthcare

    Get PDF
    Medical activity requires responsibility not only from clinical knowledge and skill but also on the management of an enormous amount of information related to patient care. It is through proper treatment of information that experts can consistently build a healthy wellness policy. The primary objective for the development of decision support systems (DSSs) is to provide information to specialists when and where they are needed. These systems provide information, models, and data manipulation tools to help experts make better decisions in a variety of situations. Most of the challenges that smart DSSs face come from the great difficulty of dealing with large volumes of information, which is continuously generated by the most diverse types of devices and equipment, requiring high computational resources. This situation makes this type of system susceptible to not recovering information quickly for the decision making. As a result of this adversity, the information quality and the provision of an infrastructure capable of promoting the integration and articulation among different health information systems (HIS) become promising research topics in the field of electronic health (e-health) and that, for this same reason, are addressed in this research. The work described in this thesis is motivated by the need to propose novel approaches to deal with problems inherent to the acquisition, cleaning, integration, and aggregation of data obtained from different sources in e-health environments, as well as their analysis. To ensure the success of data integration and analysis in e-health environments, it is essential that machine-learning (ML) algorithms ensure system reliability. However, in this type of environment, it is not possible to guarantee a reliable scenario. This scenario makes intelligent SAD susceptible to predictive failures, which severely compromise overall system performance. On the other hand, systems can have their performance compromised due to the overload of information they can support. To solve some of these problems, this thesis presents several proposals and studies on the impact of ML algorithms in the monitoring and management of hypertensive disorders related to pregnancy of risk. The primary goals of the proposals presented in this thesis are to improve the overall performance of health information systems. In particular, ML-based methods are exploited to improve the prediction accuracy and optimize the use of monitoring device resources. It was demonstrated that the use of this type of strategy and methodology contributes to a significant increase in the performance of smart DSSs, not only concerning precision but also in the computational cost reduction used in the classification process. The observed results seek to contribute to the advance of state of the art in methods and strategies based on AI that aim to surpass some challenges that emerge from the integration and performance of the smart DSSs. With the use of algorithms based on AI, it is possible to quickly and automatically analyze a larger volume of complex data and focus on more accurate results, providing high-value predictions for a better decision making in real time and without human intervention.A atividade médica requer responsabilidade não apenas com base no conhecimento e na habilidade clínica, mas também na gestão de uma enorme quantidade de informações relacionadas ao atendimento ao paciente. É através do tratamento adequado das informações que os especialistas podem consistentemente construir uma política saudável de bem-estar. O principal objetivo para o desenvolvimento de sistemas de apoio à decisão (SAD) é fornecer informações aos especialistas onde e quando são necessárias. Esses sistemas fornecem informações, modelos e ferramentas de manipulação de dados para ajudar os especialistas a tomar melhores decisões em diversas situações. A maioria dos desafios que os SAD inteligentes enfrentam advêm da grande dificuldade de lidar com grandes volumes de dados, que é gerada constantemente pelos mais diversos tipos de dispositivos e equipamentos, exigindo elevados recursos computacionais. Essa situação torna este tipo de sistemas suscetível a não recuperar a informação rapidamente para a tomada de decisão. Como resultado dessa adversidade, a qualidade da informação e a provisão de uma infraestrutura capaz de promover a integração e a articulação entre diferentes sistemas de informação em saúde (SIS) tornam-se promissores tópicos de pesquisa no campo da saúde eletrônica (e-saúde) e que, por essa mesma razão, são abordadas nesta investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à aquisição, limpeza, integração e agregação de dados obtidos de diferentes fontes em ambientes de e-saúde, bem como sua análise. Para garantir o sucesso da integração e análise de dados em ambientes e-saúde é importante que os algoritmos baseados em aprendizagem de máquina (AM) garantam a confiabilidade do sistema. No entanto, neste tipo de ambiente, não é possível garantir um cenário totalmente confiável. Esse cenário torna os SAD inteligentes suscetíveis à presença de falhas de predição que comprometem seriamente o desempenho geral do sistema. Por outro lado, os sistemas podem ter seu desempenho comprometido devido à sobrecarga de informações que podem suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de algoritmos de AM na monitoria e gestão de transtornos hipertensivos relacionados com a gravidez (gestação) de risco. O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global de sistemas de informação em saúde. Em particular, os métodos baseados em AM são explorados para melhorar a precisão da predição e otimizar o uso dos recursos dos dispositivos de monitorização. Ficou demonstrado que o uso deste tipo de estratégia e metodologia contribui para um aumento significativo do desempenho dos SAD inteligentes, não só em termos de precisão, mas também na diminuição do custo computacional utilizado no processo de classificação. Os resultados observados buscam contribuir para o avanço do estado da arte em métodos e estratégias baseadas em inteligência artificial que visam ultrapassar alguns desafios que advêm da integração e desempenho dos SAD inteligentes. Como o uso de algoritmos baseados em inteligência artificial é possível analisar de forma rápida e automática um volume maior de dados complexos e focar em resultados mais precisos, fornecendo previsões de alto valor para uma melhor tomada de decisão em tempo real e sem intervenção humana

    Automatic risk evaluation in elderly patients based on Autonomic Nervous System assessment

    Get PDF
    Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    Healthcare 4.0 digital technologies impact on quality of care: A systematic literature review

    Get PDF
    The healthcare industry is transforming into Healthcare 4.0 (H4.0), an era characterized by smart and connected healthcare systems. This study presents a conceptual framework that classifies H4.0 digital technologies into information and communication technology bundles within the healthcare value chain. It also identifies barriers and evaluates digital technologies’ impact on quality measures through a systematic literature review and meta-analysis approach following the PRISMA protocol. The analysis reveals that digital technologies in the healthcare sector traditionally consist of sensing-communication and processing-actuation technologies. The findings highlight the significant influence of H4.0 digital technologies on three quality measures: patient safety, patient experience/ satisfaction, and clinical effectiveness. While these technologies offer potential benefits, they pose challenges for patients and clinicians, including intellectual property and significance concerns, especially in North America. The proposed framework addresses these issues and enables stakeholders to prioritize, review, and analyze H4.0 digital technologies to enhance patient safety, experience, and clinical effectiveness. This research contributes to the existing literature by being the first comprehensive analysis of the impact of H4.0 technologies on the quality of care. The framework provided in this study offers valuable guidance for stakeholders in selecting appropriate technologies to improve patient outcomes and support the healthcare value chain

    Personal Healthcare Agents for Monitoring and Predicting Stress and Hypertension from Biosignals

    Get PDF
    We live in exciting times. The fast paced growth in mobile computers has put powerful computational devices in the palm of our hands. Blazing fast connectivity has made human-human, human-machine, and machine-machine communication effortless. Wearable devices and the internet of things have made monitoring every aspect of our lives easier. This has given rise to the domain of quantified self where we can continuous record and quantify the various signals generated in everyday life. Sensors on smartphones can continuously record our location and motion profile. Sensors on wearable devices can track changes in our bodies’ physiological responses. This monitoring also has the capability to revolutionise the health care domain by creating more informed and involved patients. This has the potential to shift care-management from a physician-centric approach to a patient-centric approach allowing individuals to create more empowered patients and individuals who are in better control of their health. However, the data deluge from all these sources can sometimes be overwhelming. There is a need for intelligent technology that can help us navigate the data and take informed decisions. The goal of this work is to develop a mobile, personal intelligent agent platform that can become a digital companion to live with the user. It can monitor the covert and overt signal streams of the user, identify activity and stress levels to help the users’ make healthy choices regarding their lives. This thesis particularly targets patients suffering from or at-risk of essential hypertension since its a difficult condition to detect and manage. This thesis delivers the following contributions: 1) An intelligent personal agent platform for on-the-go continuous monitoring of covert and overt signals. 2) A machine learning algorithm for accurate recognition of activities using smartphone signals recorded from in-the-wild scenarios. 3) A machine learning pipeline to combine various physiological signal streams, motion profiles, and user annotations for on-the-go stress recognition. 4) We design and train a complete signal processing and classification system for hypertension prediction. 5) Through a small pilot study we demonstrate that this system can distinguish between hypertensive and normotensive subjects with high accuracy

    Med-e-Tel 2013

    Get PDF

    A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review

    Get PDF
    Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks

    14th Conference on DATA ANALYSIS METHODS for Software Systems

    Get PDF
    DAMSS-2023 is the 14th International Conference on Data Analysis Methods for Software Systems, held in Druskininkai, Lithuania. Every year at the same venue and time. The exception was in 2020, when the world was gripped by the Covid-19 pandemic and the movement of people was severely restricted. After a year’s break, the conference was back on track, and the next conference was successful in achieving its primary goal of lively scientific communication. The conference focuses on live interaction among participants. For better efficiency of communication among participants, most of the presentations are poster presentations. This format has proven to be highly effective. However, we have several oral sections, too. The history of the conference dates back to 2009 when 16 papers were presented. It began as a workshop and has evolved into a well-known conference. The idea of such a workshop originated at the Institute of Mathematics and Informatics, now the Institute of Data Science and Digital Technologies of Vilnius University. The Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea, which gained enthusiastic acceptance from both the Lithuanian and international scientific communities. This year’s conference features 84 presentations, with 137 registered participants from 11 countries. The conference serves as a gathering point for researchers from six Lithuanian universities, making it the main annual meeting for Lithuanian computer scientists. The primary aim of the conference is to showcase research conducted at Lithuanian and foreign universities in the fields of data science and software engineering. The annual organization of the conference facilitates the rapid exchange of new ideas within the scientific community. Seven IT companies supported the conference this year, indicating the relevance of the conference topics to the business sector. In addition, the conference is supported by the Lithuanian Research Council and the National Science and Technology Council (Taiwan, R. O. C.). The conference covers a wide range of topics, including Applied Mathematics, Artificial Intelligence, Big Data, Bioinformatics, Blockchain Technologies, Business Rules, Software Engineering, Cybersecurity, Data Science, Deep Learning, High-Performance Computing, Data Visualization, Machine Learning, Medical Informatics, Modelling Educational Data, Ontological Engineering, Optimization, Quantum Computing, Signal Processing. This book provides an overview of all presentations from the DAMSS-2023 conference

    Long-Term IoT-Based Maternal Monitoring: System Design and Evaluation

    Get PDF
    Pregnancy is a unique time when many mothers gain awareness of their lifestyle and its impacts on the fetus. High-quality care during pregnancy is needed to identify possible complications early and ensure the mother's and her unborn baby's health and well-being. Different studies have thus far proposed maternal health monitoring systems. However, they are designed for a specific health problem or are limited to questionnaires and short-term data collection methods. Moreover, the requirements and challenges have not been evaluated in long-term studies. Maternal health necessitates a comprehensive framework enabling continuous monitoring of pregnant women. In this paper, we present an Internet-of-Things (IoT)-based system to provide ubiquitous maternal health monitoring during pregnancy and postpartum. The system consists of various data collectors to track the mother's condition, including stress, sleep, and physical activity. We carried out the full system implementation and conducted a real human subject study on pregnant women in Southwestern Finland. We then evaluated the system's feasibility, energy efficiency, and data reliability. Our results show that the implemented system is feasible in terms of system usage during nine months. We also indicate the smartwatch, used in our study, has acceptable energy efficiency in long-term monitoring and is able to collect reliable photoplethysmography data. Finally, we discuss the integration of the presented system with the current healthcare system
    corecore