1,544 research outputs found

    A Crowd-Assisted Real-time Public Transport Information Service: No More Endless Wait

    Get PDF
    Many passengers have expressed frustration in waiting for public bus endlessly without knowing the estimated ar- rival time. In many developing countries, requiring bus operators to invest in the installation of a GPS unit on every bus in order to track the bus location and subsequently predicting the bus arrival time can be costly. This paper proposes passenger-assisted sharing of bus location to provide an estimation of bus arrival time. Our scheme aims to exploit the availability and capability of passenger mobile phones to share location information of the travelling buses in order to collect transportation data, at the same time provide an estimation of bus arrival time to the general public. A mobile app is developed to periodically report bus location to the cloud service, and it can detect location spoofing by malicious users. The preliminary results of the field tests suggest that the proposed system is viable and the predicated ETA falls within three minutes of the bus actual arrival time

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    High-efficiency Urban-traffic Management in Context-aware Computing and 5G Communication

    Get PDF
    With the increasing number of vehicle and traffic jams, urban-traffic management is becoming a serious issue. In this article, we propose novel four-tier architecture for urban-traffic management with the convergence of vehicle ad hoc networks (VANETs), 5G wireless network, software-defined network (SDN), and mobile-edge computing (MEC) technologies. The proposed architecture provides better communication and rapider responsive speed in a more distributed and dynamic manner. The practical case of rapid accident rescue can significantly cut down the time for rescue. Key technologies with respect to vehicle localization, data pre-fetching, traffic lights control, and traffic prediction are also discussed. Obviously, the novel architecture shows noteworthy potential for alleviating the traffic congestion and improving the efficiency of urban-traffic management

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Internet of Things and Big Data Analytics for Smart and Connected Communities

    Get PDF
    This paper promotes the concept of smart and connected communities SCC, which is evolving from the concept of smart cities. SCC are envisioned to address synergistically the needs of remembering the past (preservation and revitalization), the needs of living in the present (livability), and the needs of planning for the future (attainability). Therefore, the vision of SCC is to improve livability, preservation, revitalization, and attainability of a community. The goal of building SCC for a community is to live in the present, plan for the future, and remember the past. We argue that Internet of Things (IoT) has the potential to provide a ubiquitous network of connected devices and smart sensors for SCC, and big data analytics has the potential to enable the move from IoT to real-time control desired for SCC. We highlight mobile crowdsensing and cyber-physical cloud computing as two most important IoT technologies in promoting SCC. As a case study, we present TreSight, which integrates IoT and big data analytics for smart tourism and sustainable cultural heritage in the city of Trento, Italy

    ECONOMIZED SENSOR DATA PROCESSING WITH VEHICLE PLATOONING

    Get PDF
    We present platooning as a special case of crowd-sensing framework. After offering a policy that governs platooning, we review common scenarios and components surrounding platooning. We present a prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that beyond the commonly reported benefits of platooning, there are substantial savings in acquisition and processing of sensory data sharing the road. Our results show that data transmission can be reduced to low of 3% compared to normal data transmission using a platoon formation with sensor sharing

    Network of excellence in internet science: D13.2.1 Internet science – going forward: internet science roadmap (preliminary version)

    No full text
    • …
    corecore