2,138 research outputs found

    Latency Minimization for Task Offloading in Hierarchical Fog-Computing C-RAN Networks

    Full text link
    Fog-computing network combines the cloud computing and fog access points (FAPs) equipped with mobile edge computing (MEC) servers together to support computation-intensive tasks for mobile users. However, as FAPs have limited computational capabilities and are solely assisted by a remote cloud center in the baseband processing unit (BBU) of the cloud radio access (C-RAN) network, the latency benefits of this fog-computing C-RAN network may be worn off when facing a large number of offloading requests. In this paper, we investigate the delay minimization problem for task offloading in a hierarchical fog-computing C-RAN network, which consists of three tiers of computational services: MEC server in radio units, MEC server in distributed units, and the cloud computing in central units. The receive beamforming vectors, task allocation, computing speed for offloaded tasks in each server and the transmission bandwidth split of fronthaul links are optimized by solving the formulated mixed integer programming problem. The simulation results validate the superiority of the proposed hierarchical fog-computing C-RAN network in terms of the delay performance.Comment: accepted by ICC 202

    A Computation Offloading Incentive Mechanism with Delay and Cost Constraints under 5G Satellite-ground IoV architecture

    Full text link
    The 5G Internet of Vehicles has become a new paradigm alongside the growing popularity and variety of computation-intensive applications with high requirements for computational resources and analysis capabilities. Existing network architectures and resource management mechanisms may not sufficiently guarantee satisfactory Quality of Experience and network efficiency, mainly suffering from coverage limitation of Road Side Units, insufficient resources, and unsatisfactory computational capabilities of onboard equipment, frequently changing network topology, and ineffective resource management schemes. To meet the demands of such applications, in this article, we first propose a novel architecture by integrating the satellite network with 5G cloud-enabled Internet of Vehicles to efficiently support seamless coverage and global resource management. A incentive mechanism based joint optimization problem of opportunistic computation offloading under delay and cost constraints is established under the aforementioned framework, in which a vehicular user can either significantly reduce the application completion time by offloading workloads to several nearby vehicles through opportunistic vehicle-to-vehicle channels while effectively controlling the cost or protect its own profit by providing compensated computing service. As the optimization problem is non-convex and NP-hard, simulated annealing based on the Markov Chain Monte Carlo as well as the metropolis algorithm is applied to solve the optimization problem, which can efficaciously obtain both high-quality and cost-effective approximations of global optimal solutions. The effectiveness of the proposed mechanism is corroborated through simulation results

    Exploiting Massive D2D Collaboration for Energy-Efficient Mobile Edge Computing

    Full text link
    In this article we propose a novel Device-to-Device (D2D) Crowd framework for 5G mobile edge computing, where a massive crowd of devices at the network edge leverage the network-assisted D2D collaboration for computation and communication resource sharing among each other. A key objective of this framework is to achieve energy-efficient collaborative task executions at network-edge for mobile users. Specifically, we first introduce the D2D Crowd system model in details, and then formulate the energy-efficient D2D Crowd task assignment problem by taking into account the necessary constraints. We next propose a graph matching based optimal task assignment policy, and further evaluate its performance through extensive numerical study, which shows a superior performance of more than 50% energy consumption reduction over the case of local task executions. Finally, we also discuss the directions of extending the D2D Crowd framework by taking into variety of application factors.Comment: Xu Chen, Lingjun Pu, Lin Gao, Weigang Wu, and Di Wu, "Exploiting Massive D2D Collaboration for Energy-Efficient Mobile Edge Computing," accepted by IEEE Wireless Communications, 201

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure

    Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

    Full text link
    The Internet of Things (IoT) paradigm is being rapidly adopted for the creation of smart environments in various domains. The IoT-enabled Cyber-Physical Systems (CPSs) associated with smart city, healthcare, Industry 4.0 and Agtech handle a huge volume of data and require data processing services from different types of applications in real-time. The Cloud-centric execution of IoT applications barely meets such requirements as the Cloud datacentres reside at a multi-hop distance from the IoT devices. \textit{Fog computing}, an extension of Cloud at the edge network, can execute these applications closer to data sources. Thus, Fog computing can improve application service delivery time and resist network congestion. However, the Fog nodes are highly distributed, heterogeneous and most of them are constrained in resources and spatial sharing. Therefore, efficient management of applications is necessary to fully exploit the capabilities of Fog nodes. In this work, we investigate the existing application management strategies in Fog computing and review them in terms of architecture, placement and maintenance. Additionally, we propose a comprehensive taxonomy and highlight the research gaps in Fog-based application management. We also discuss a perspective model and provide future research directions for further improvement of application management in Fog computing

    Joint Optimal Software Caching, Computation Offloading and Communications Resource Allocation for Mobile Edge Computing

    Full text link
    As software may be used by multiple users, caching popular software at the wireless edge has been considered to save computation and communications resources for mobile edge computing (MEC). However, fetching uncached software from the core network and multicasting popular software to users have so far been ignored. Thus, existing design is incomplete and less practical. In this paper, we propose a joint caching, computation and communications mechanism which involves software fetching, caching and multicasting, as well as task input data uploading, task executing (with non-negligible time duration) and computation result downloading, and mathematically characterize it. Then, we optimize the joint caching, offloading and time allocation policy to minimize the weighted sum energy consumption subject to the caching and deadline constraints. The problem is a challenging two-timescale mixed integer nonlinear programming (MINLP) problem, and is NP-hard in general. We convert it into an equivalent convex MINLP problem by using some appropriate transformations and propose two low-complexity algorithms to obtain suboptimal solutions of the original non-convex MINLP problem. Specifically, the first suboptimal solution is obtained by solving a relaxed convex problem using the consensus alternating direction method of multipliers (ADMM), and then rounding its optimal solution properly. The second suboptimal solution is proposed by obtaining a stationary point of an equivalent difference of convex (DC) problem using the penalty convex-concave procedure (Penalty-CCP) and ADMM. Finally, by numerical results, we show that the proposed solutions outperform existing schemes and reveal their advantages in efficiently utilizing storage, computation and communications resources.Comment: To appear in IEEE Trans. Veh. Technol., 202

    Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

    Full text link
    Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobile users in executing computation-intensive tasks via task offloading. The problem of Joint Task Offloading and Resource Allocation (JTORA) is studied in order to maximize the users' task offloading gains, which is measured by the reduction in task completion time and energy consumption. The considered problem is formulated as a Mixed Integer Non-linear Program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the NP-hardness of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, our approach is to decompose the original problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a suboptimal solution in polynomial time. Numerical simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches

    The Power of Smartphones

    Full text link
    Smartphones have been shipped with multiple wireless network interfaces in order to meet their diverse communication and networking demands. However, as smartphones increasingly rely on wireless network connections to realize more functions, the demand of energy has been significantly increased, which has become the limit for people to explore smartphones' real power. In this paper, we first review typical smartphone computing systems, energy consumption of smartphone, and state-of-the-art techniques of energy saving for smartphones. Then we propose a location-assisted Wi-Fi discovery scheme, which discovers the nearest Wi-Fi network access points (APs) by using the user's location information. This allows the user to switch to the Wi-Fi interface in an intelligent manner when he/she arrives at the nearest Wi-Fi network AP. Thus we can meet the user's bandwidth needs and provide the best connectivity. Additionally, it avoids the long periods in idle state and greatly reduces the number of unnecessary Wi-Fi scans on the mobile device. Our experiments and simulations demonstrate that our scheme effectively saves energy for smartphones integrated with Wi-Fi and cellular interfaces.Comment: accepted; Multimedia Systems, 2013. arXiv admin note: text overlap with arXiv:1201.021
    corecore