558 research outputs found

    Protecting web services with service oriented traceback architecture

    Full text link
    Service oriented architecture (SOA) is a way of reorganizing software infrastructure into a set of service abstracts. In the area of applying SOA to Web service security, there have been some well defined security dimensions. However, current Web security systems, like WS-Security are not efficient enough to handle distributed denial of service (DDoS) attacks. Our new approach, service oriented traceback architecture (SOTA), provides a framework to be able to identify the source of an attack. This is accomplished by deploying our defence system at distributed routers, in order to examine the incoming SOAP messages and place our own SOAP header. By this method, we can then use the new SOAP header information, to traceback through the network the source of the attack. According to our experimental performance evaluations, we find that SOTA is quite scaleable, simple and quite effective at identifying the source.<br /

    A survey of denial-of-service and distributed denial of service attacks and defenses in cloud computing

    Get PDF
    Cloud Computing is a computingmodel that allows ubiquitous, convenient and on-demand access to a shared pool of highly configurable resources (e.g., networks, servers, storage, applications and services). Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are serious threats to the Cloud services’ availability due to numerous new vulnerabilities introduced by the nature of the Cloud, such as multi-tenancy and resource sharing. In this paper, new types of DoS and DDoS attacks in Cloud Computing are explored, especially the XML-DoS and HTTP-DoS attacks, and some possible detection and mitigation techniques are examined. This survey also provides an overview of the existing defense solutions and investigates the experiments and metrics that are usually designed and used to evaluate their performance, which is helpful for the future research in the domain

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Distributed Denial of Service Attack Challenges in Cloud Computing: A Review

    Get PDF
    Cloud computing as an ever-evolving technology has appeared to be a new discovery, with a history that can be traced to the 1960s, yet the computing paradigm has not been fully adopted till date. This is due to the security and trust management issues associated with the paradigm. Studies so far have shown remarkable efforts in the area of cloud computing security but has paid little attention to the area of application-based denial of service and its distributed variant. To this end, this paper highlights the Extensive Mark-up Language Denial of Service (XDoS) and the Extensive Mark-up Language Distributed Denial of Service (XDDoS) as one of the security challenges that inhibit the adoption of cloud computing. So many researchers in this field have proposed different solutions to this issues, however, it was observed that there is a need for an efficient and more effective counter-measures solution against XDoS and its distributed variant XDDoS which are application based denial of service that can be found in software as a service (SaaS) cloud computing service model

    Security Challenges from Abuse of Cloud Service Threat

    Get PDF
    Cloud computing is an ever-growing technology that leverages dynamic and versatile provision of computational resources and services. In spite of countless benefits that cloud service has to offer, there is always a security concern for new threats and risks. The paper provides a useful introduction to the rising security issues of Abuse of cloud service threat, which has no standard security measures to mitigate its risks and vulnerabilities. The threat can result an unbearable system gridlock and can make cloud services unavailable or even complete shutdown. The study has identified the potential challenges, as BotNet, BotCloud, Shared Technology Vulnerability and Malicious Insiders, from Abuse of cloud service threat. It has further described the attacking methods, impacts and the reasons due to the identified challenges. The study has evaluated the current available solutions and proposed mitigating security controls for the security risks and challenges from Abuse of cloud services threat

    A Threat Computation Model using a Markov Chain and Common Vulnerability Scoring System and its Application to Cloud Security

    Full text link
    Copyright © 2019 Securing cyber infrastructures has become critical because they are increasingly exposed to attackers while accommodating a huge number of IoT devices and supporting numerous sophisticated emerging applications. Security metrics are essential for assessing the security risks and making effective decisions concerning system security. Many security metrics rely on mathematical models, but are mainly based on empirical data, qualitative methods, or compliance checking, and this renders the outcome far from satisfactory. Computing the probability of an attack, or more precisely a threat that materialises into an attack, forms an essential basis for a quantitative security metric. This paper proposes a novel approach to compute the probability distribution of cloud security threats based on a Markov chain and Common Vulnerability Scoring System. Moreover, the paper introduces the method to estimate the probability of security attacks. The use of the new security threat model and its computation is demonstrated through their application to estimating the probabilities of cloud threats and types of attacks

    Towards Protection Against Low-Rate Distributed Denial of Service Attacks in Platform-as-a-Service Cloud Services

    Get PDF
    Nowadays, the variety of technology to perform daily tasks is abundant and different business and people benefit from this diversity. The more technology evolves, more useful it gets and in contrast, they also become target for malicious users. Cloud Computing is one of the technologies that is being adopted by different companies worldwide throughout the years. Its popularity is essentially due to its characteristics and the way it delivers its services. This Cloud expansion also means that malicious users may try to exploit it, as the research studies presented throughout this work revealed. According to these studies, Denial of Service attack is a type of threat that is always trying to take advantage of Cloud Computing Services. Several companies moved or are moving their services to hosted environments provided by Cloud Service Providers and are using several applications based on those services. The literature on the subject, bring to attention that because of this Cloud adoption expansion, the use of applications increased. Therefore, DoS threats are aiming the Application Layer more and additionally, advanced variations are being used such as Low-Rate Distributed Denial of Service attacks. Some researches are being conducted specifically for the detection and mitigation of this kind of threat and the significant problem found within this DDoS variant, is the difficulty to differentiate malicious traffic from legitimate user traffic. The main goal of this attack is to exploit the communication aspect of the HTTP protocol, sending legitimate traffic with small changes to fill the requests of a server slowly, resulting in almost stopping the access of real users to the server resources during the attack. This kind of attack usually has a small time window duration but in order to be more efficient, it is used within infected computers creating a network of attackers, transforming into a Distributed attack. For this work, the idea to battle Low-Rate Distributed Denial of Service attacks, is to integrate different technologies inside an Hybrid Application where the main goal is to identify and separate malicious traffic from legitimate traffic. First, a study is done to observe the behavior of each type of Low-Rate attack in order to gather specific information related to their characteristics when the attack is executing in real-time. Then, using the Tshark filters, the collection of those packet information is done. The next step is to develop combinations of specific information obtained from the packet filtering and compare them. Finally, each packet is analyzed based on these combinations patterns. A log file is created to store the data gathered after the Entropy calculation in a friendly format. In order to test the efficiency of the application, a Cloud virtual infrastructure was built using OpenNebula Sandbox and Apache Web Server. Two tests were done against the infrastructure, the first test had the objective to verify the effectiveness of the tool proportionally against the Cloud environment created. Based on the results of this test, a second test was proposed to demonstrate how the Hybrid Application works against the attacks performed. The conclusion of the tests presented how the types of Slow-Rate DDoS can be disruptive and also exhibited promising results of the Hybrid Application performance against Low-Rate Distributed Denial of Service attacks. The Hybrid Application was successful in identify each type of Low-Rate DDoS, separate the traffic and generate few false positives in the process. The results are displayed in the form of parameters and graphs.Actualmente, a variedade de tecnologias que realizam tarefas diárias é abundante e diferentes empresas e pessoas se beneficiam desta diversidade. Quanto mais a tecnologia evolui, mais usual se torna, em contraposição, essas empresas acabam por se tornar alvo de actividades maliciosas. Computação na Nuvem é uma das tecnologias que vem sendo adoptada por empresas de diferentes segmentos ao redor do mundo durante anos. Sua popularidade se deve principalmente devido as suas características e a maneira com o qual entrega seus serviços ao cliente. Esta expansão da Computação na Nuvem também implica que usuários maliciosos podem tentar explorá-la, como revela estudos de pesquisas apresentados ao longo deste trabalho. De acordo também com estes estudos, Ataques de Negação de Serviço são um tipo de ameaça que sempre estão a tentar tirar vantagens dos serviços de Computação na Nuvem. Várias empresas moveram ou estão a mover seus serviços para ambientes hospedados fornecidos por provedores de Computação na Nuvem e estão a utilizar várias aplicações baseadas nestes serviços. A literatura existente sobre este tema chama atenção sobre o fato de que, por conta desta expansão na adopção à serviços na Nuvem, o uso de aplicações aumentou. Portanto, ameaças de Negação de Serviço estão visando mais a camada de aplicação e também, variações de ataques mais avançados estão sendo utilizadas como Negação de Serviço Distribuída de Baixa Taxa. Algumas pesquisas estão a ser feitas relacionadas especificamente para a detecção e mitigação deste tipo de ameaça e o maior problema encontrado nesta variante é diferenciar tráfego malicioso de tráfego legítimo. O objectivo principal desta ameaça é explorar a maneira como o protocolo HTTP trabalha, enviando tráfego legítimo com pequenas modificações para preencher as solicitações feitas a um servidor lentamente, tornando quase impossível para usuários legítimos aceder os recursos do servidor durante o ataque. Este tipo de ataque geralmente tem uma janela de tempo curta mas para obter melhor eficiência, o ataque é propagado utilizando computadores infectados, criando uma rede de ataque, transformando-se em um ataque distribuído. Para este trabalho, a ideia para combater Ataques de Negação de Serviço Distribuída de Baixa Taxa é integrar diferentes tecnologias dentro de uma Aplicação Híbrida com o objectivo principal de identificar e separar tráfego malicioso de tráfego legítimo. Primeiro, um estudo é feito para observar o comportamento de cada tipo de Ataque de Baixa Taxa, a fim de recolher informações específicas relacionadas às suas características quando o ataque é executado em tempo-real. Então, usando os filtros do programa Tshark, a obtenção destas informações é feita. O próximo passo é criar combinações das informações específicas obtidas dos pacotes e compará-las. Então finalmente, cada pacote é analisado baseado nos padrões de combinações feitos. Um arquivo de registo é criado ao fim para armazenar os dados recolhidos após o cálculo da Entropia em um formato amigável. A fim de testar a eficiência da Aplicação Híbrida, uma infra-estrutura Cloud virtual foi construída usando OpenNebula Sandbox e servidores Apache. Dois testes foram feitos contra a infra-estrutura, o primeiro teste teve o objectivo de verificar a efectividade da ferramenta proporcionalmente contra o ambiente de Nuvem criado. Baseado nos resultados deste teste, um segundo teste foi proposto para verificar o funcionamento da Aplicação Híbrida contra os ataques realizados. A conclusão dos testes mostrou como os tipos de Ataques de Negação de Serviço Distribuída de Baixa Taxa podem ser disruptivos e também revelou resultados promissores relacionados ao desempenho da Aplicação Híbrida contra esta ameaça. A Aplicação Híbrida obteve sucesso ao identificar cada tipo de Ataque de Negação de Serviço Distribuída de Baixa Taxa, em separar o tráfego e gerou poucos falsos positivos durante o processo. Os resultados são exibidos em forma de parâmetros e grafos

    Exploitation of Vulnerabilities in Cloud-Storage

    Get PDF
    The paper presents the vulnerabilities of cloudstorage and various possible attacks exploiting thesevulnerabilities that relate to cloud security, which is one of thechallenging features of cloud computing. The attacks areclassified into three broad categories of which the socialnetworking based attacks are the recent attacks which areevolving out of existing technologies such as P2P file sharing.The study is extended to available defence mechanisms andcurrent research areas of cloud storage. Based on the study,simple cloud storage is implemented and the major aspectssuch as login mechanism, encryption techniques and keymanagement techniques are evaluated against the presentedattacks. The study proves that the cloud storage consumers arestill dependent on the trust and contracts agreed with theservice provider and there is no hard way of proven defensemechanisms against the attacks. Further down, the emergingtechnologies could possibly break down all key basedencryption mechanisms
    corecore