5,112 research outputs found

    Predicting Alder shrub expansion in Sub-Arctic Alaska using machine learning, satellite data, and environmental variables

    Get PDF
    The wider Fairbanks area, a sub-Arctic region of Alaska, USA, is home to a variety of alpine, oroarctic tundra that is being impacted by climate warming. This has resulted in an infilling and expansion of shrubs across the tundra and an elevational increase in the range limits of tall shrubs. Expansion of Alder (a key pioneer tall shrub) is thought to result from Arctic warming and shifts in its spread are likely to be a result of such warming. Alder can fix atmospheric nitrogen by virtue of a mutualistic association with soil bacteria, which subsequently becomes available to other shrubs, potentially relieving local soil nitrogen limitations and promoting a positive growth response to climate warming. This potential landscape-scale change requires information of change at a suitable scale. However, Alder and other tall shrubs have been hard to measure using existing remote sensing approaches alone. This is mainly due to issues surrounding data availability and suitable spatial resolution of imagery. Satellite remote sensing and environmental data are combined to create a map of Alder expansion across the wider Fairbanks area. A methodology is presented where ecological variables are integrated into prediction maps using a combination of regression and machine learning to estimate spatial extents. A baseline for a minimum number of high resolution training polygons is found to understand minimum required inputs. Field-based validation data were collected using a random sampling design across four different locations within the Yukon-Koyukuk area, Alaska. The combination of satellite data and environmental variables yields the best results for predicting Alder locations across the study area with a model accuracy of 0.99 and User’s accuracy of 43.66%. Orthomosaics as validation data are found to be very useful, enabling better quantification of smaller plant functional types for more accurate error matrix class assignment increasing overall model accuracy

    Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022

    Get PDF
    Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) are critical biophysical parameters for the characterization of terrestrial ecosystems. Long-term global LAI/FPAR products, such as the moderate resolution imaging spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS), provide the fundamental dataset for accessing vegetation dynamics and studying climate change. However, existing global LAI/FPAR products suffer from several limitations, including spatial–temporal inconsistencies and accuracy issues. Considering these limitations, this study develops a sensor-independent (SI) LAI/FPAR climate data record (CDR) based on Terra-MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products. The SI LAI/FPAR CDR covers the period from 2000 to 2022, at spatial resolutions of 500 m/5 km/0.05∘, 8 d/bimonthly temporal frequencies and available in sinusoidal and WGS1984 projections. The methodology includes (i) comprehensive analyses of sensor-specific quality assessment variables to select high-quality retrievals, (ii) application of the spatial–temporal tensor (ST-tensor) completion model to extrapolate LAI and FPAR beyond areas with high-quality retrievals, (iii) generation of SI LAI/FPAR CDR in various projections and various spatial and temporal resolutions, and (iv) evaluation of the CDR by direct comparisons with ground data and indirectly through reproducing results of LAI/FPAR trends documented in the literature. This paper provides a comprehensive analysis of each step involved in the generation of the SI LAI/FPAR CDR, as well as evaluation of the ST-tensor completion model. Comparisons of SI LAI (FPAR) CDR with ground truth data suggest an RMSE of 0.84 LAI (0.15 FPAR) units with R2 of 0.72 (0.79), which outperform the standard Terra/Aqua/VIIRS LAI (FPAR) products. The SI LAI/FPAR CDR is characterized by a low time series stability (TSS) value, suggesting a more stable and less noisy dataset than sensor-dependent counterparts. Furthermore, the mean absolute error (MAE) of the CDR is also lower, suggesting that SI LAI/FPAR CDR is comparable in accuracy to high-quality retrievals. LAI/FPAR trend analyses based on the SI LAI/FPAR CDR agree with previous studies, which indirectly provides enhanced capabilities to utilize this CDR for studying vegetation dynamics and climate change. Overall, the integration of multiple satellite data sources and the use of advanced gap filling modeling techniques improve the accuracy of the SI LAI/FPAR CDR, ensuring the reliability of long-term vegetation studies, global carbon cycle modeling, and land policy development for informed decision-making and sustainable environmental management. The SI LAI/FPAR CDR is open access and available under a Creative Commons Attribution 4.0 License at https://doi.org/10.5281/zenodo.8076540 (Pu et al., 2023a).</p

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    A novel bottleneck residual and self-attention fusion-assisted architecture for land use recognition in remote sensing images

    Get PDF
    The massive yearly population growth is causing hazards to spread swiftly around the world and have a detrimental impact on both human life and the world economy. By ensuring early prediction accuracy, remote sensing enters the scene to safeguard the globe against weather-related threats and natural disasters. Convolutional neural networks, which are a reflection of deep learning, have been used more recently to reliably identify land use in remote sensing images. This work proposes a novel bottleneck residual and self-attention fusion-assisted architecture for land use recognition from remote sensing images. First, we proposed using the fast neural approach to generate cloud-effect satellite images. In neural style, we proposed a 5-layered residual block CNN to estimate the loss of neural-style images. After that, we proposed two novel architectures, named 3-layered bottleneck CNN architecture and 3-layered bottleneck self-attention CNN architecture, for the classification of land use images. Training has been conducted on both proposed and original neural-style generated datasets for both architectures. Subsequently, features are extracted from the deep layers and merged employing an innovative serial approach based on weighted entropy. By removing redundant and superfluous data, a novel Chimp Optimization technique is applied to the fused features in order to further refine them. In conclusion, selected features are classified using the help of neural network classifiers. The experimental procedure yielded respective accuracy rates of 99.0% and 99.4% when applied to both datasets. When evaluated in comparison to state-of-the-art (SOTA) methods, the outcomes generated by the proposed framework demonstrated enhanced precision and accuracy

    A tree species classification model based on improved YOLOv7 for shelterbelts

    Get PDF
    Tree species classification within shelterbelts is crucial for shelterbelt management. The large-scale satellite-based and low-altitude drone-based approaches serve as powerful tools for forest monitoring, especially in tree species classification. However, these methods face challenges in distinguishing individual tree species within complex backgrounds. Additionally, the mixed growth of trees within protective forest suffers from similar crown size among different tree species. The complex background of the shelterbelts negatively impacts the accuracy of tree species classification. The You Only Look Once (YOLO) algorithm is widely used in the field of agriculture and forestry, ie., plant and fruit identification, pest and disease detection, and tree species classification in forestry. We proposed a YOLOv7-Kmeans++_CoordConv_CBAM (YOLOv7-KCC) model for tree species classification based on drone RGB remote sensing images. Firstly, we constructed a dataset for tree species in shelterbelts and adopted data augmentation methods to mitigate overfitting due to limited training data. Secondly, the K-means++ algorithm was employed to cluster anchor boxes in the dataset. Furthermore, to enhance the YOLOv7 backbone network’s Efficient Layer Aggregation Network (ELAN) module, we used Coordinate Convolution (CoordConv) replaced the ordinary 1×1 convolution. The Convolutional Block Attention Module (CBAM) was integrated into the Path Aggregation Network (PANet) structure to facilitate multiscale feature extraction and fusion, allowing the network to better capture and utilize crucial feature information. Experimental results showed that the YOLOv7-KCC model achieves a mean average [email protected] of 98.91%, outperforming the Faster RCNN-VGG16, Faster RCNN-Resnet50, SSD, YOLOv4, and YOLOv7 models by 5.71%, 11.75%, 5.97%, 7.86%, and 3.69%, respectively. The GFlops and Parameter values of the YOLOv7-KCC model stand at 105.07G and 143.7MB, representing an almost 5.6% increase in F1 metrics compared to YOLOv7. Therefore, the proposed YOLOv7-KCC model can effectively classify shelterbelt tree species, providing a scientific theoretical basis for shelterbelt management in Northwest China focusing on Xinjiang

    Raman Spectroscopy Techniques for the Detection and Management of Breast Cancer

    Get PDF
    Breast cancer has recently become the most common cancer worldwide, and with increased incidence, there is increased pressure on health services to diagnose and treat many more patients. Mortality and survival rates for this particular disease are better than other cancer types, and part of this is due to the facilitation of early diagnosis provided by screening programmes, including the National Health Service breast screening programme in the UK. Despite the benefits of the programme, some patients undergo negative experiences in the form of false negative mammograms, overdiagnosis and subsequent overtreatment, and even a small number of cancers are induced by the use of ionising radiation. In addition to this, false positive mammograms cause a large number of unnecessary biopsies, which means significant costs, both financially and in terms of clinicians' time, and discourages patients from attending further screening. Improvement in areas of the treatment pathway is also needed. Surgery is usually the first line of treatment for early breast cancer, with breast conserving surgery being the preferred option compared to mastectomy. This type of operation achieves the same outcome as mastectomy - removal of the tumour - while allowing the patient to retain the majority of their normal breast tissue for improved aesthetic and psychological results. Yet, re-excision operations are often required when clear margins are not achieved, i.e. not all of the tumour is removed. This again has implications on cost and time, and increases the risk to the patient through additional surgery. Currently lacking in both the screening and surgical contexts is the ability to discern specific chemicals present in the breast tissue being assessed/removed. Specifically relevant to mammography is the presence of calcifications, the chemistry of which holds information indicative of pathology that cannot be accessed through x-rays. In addition, the chemical composition of breast tumour tissue has been shown to be different to normal tissue in a variety of ways, with one particular difference being a significant increase in water content. Raman spectroscopy is a rapid, non-ionising, non-destructive technique based on light scattering. It has been proven to discern between chemical types of calcification and subtleties within their spectra that indicate the malignancy status of the surrounding tissue, and differentiate between cancerous and normal breast tissue based on the relative water contents. Furthermore, this thesis presents work aimed at exploring deep Raman techniques to probe breast calcifications at depth within tissue, and using a high wavenumber Raman probe to discriminate tumour from normal tissue predominantly via changes in tissue water content. The ability of transmission Raman spectroscopy to detect different masses and distributions of calcified powder inclusions within tissue phantoms was tested, as well as elucidating a signal profile of a similar inclusion through a tissue phantom of clinically relevant thickness. The technique was then applied to the measurement of clinically active samples of bulk breast tissue from informed and consented patients to try to measure calcifications. Ex vivo specimens were also measured with a high wavenumber Raman probe, which found significant differences between tumour and normal tissue, largely due to water content, resulting in a classification model that achieved 77.1% sensitivity and 90.8% specificity. While calcifications were harder to detect in the ex vivo specimens, promising results were still achieved, potentially indicating a much more widespread influence of calcification in breast tissue, and to obtain useful signal from bulk human tissue is encouraging in itself. Consequently, this work demonstrates the potential value of both deep Raman techniques and high wavenumber Raman for future breast screening and tumour margin assessment methods

    Short‐term biogeomorphology of a gravel‐bed river: Integrating remote sensing with hydraulic modelling and field analysis

    Get PDF
    In recent decades, fluvial geomorphology and ecohydraulic research have extensively used field observations, remote sensing or hydrodynamic modelling to understand river systems. This study presents an innovative approach that combines field surveys, Light Detection and Ranging (LiDAR)-based topographical and biomass analyses and model-derived hydro-morphodynamic geostatistics to examine short-term bio-geomorphological changes in the wandering gravel-bed Orco River in Italy. Our primary hypothesis is that hydro-morphological variables can be robust descriptors for riparian vegetation distribution. From a geomorphological perspective, our study con-firms the prevalent wandering behaviour of the Orco River. Moreover, we identified a widening trend in braiding and anabranching sections, particularly downstream.This is evident because of hotspots of flood-induced morphological reactivation and the redistribution of sediments from the riverbed to lateral bars, resulting in a multi-thread pattern. Our analysis reveals a net increase in biomass during the observation period despite frequent flood disturbances. We attributed it to two opposing bio-geomorphological dynamics: the reduced flow disturbance in some regions due to flood-induced geomorphological changes and the self-healing of lateral connectivity through river wandering. Such a net increase indicates that transitional rivers store carbon in the form of vegetation biomass due to their short-term morphological instability and the different timescales between vegetation and morphological adjustments. Finally, we supported our initial hypothesis with three key findings: (i) a signature of vegetation not just on topography but also on hydro-morphological conditions, summarised by inundation probability; (ii) the lower variance in vertical topographical changes in vegetated areas compared with bare ones; and (iii) the introduction of a new parameter, named inundation viscosity, derived from the product of mean bed shear stress and average inundation duration, as a discriminating factor for colonisation conditions. These results underscore the value of our comprehensive approach

    Mapping Changes in Fractional Vegetation Cover on the Namib Gravel Plains with Satellite-Retrieved Land Surface Emissivity Data

    Get PDF
    Monitoring changes in vegetation cover over time is crucial for understanding the spatial distribution of rainfall, as well as the dynamics of plants and animals in the Namib desert. Traditional vegetation indices have limitations in capturing changes in vegetation cover within water-limited ecosystems like the Namib gravel plains. Spectral emissivity derived from thermal infrared remote sensing has recently emerged as a promising tool for distinguishing between bare ground and non-green vegetation in arid environments. This study investigates the potential of satellite-derived emissivities for mapping changes in fractional vegetation cover across the Namib gravel plains. Analyzing Moderate Resolution Imaging Spectroradiometer (MODIS) band 29 (λ = 8.55 ”m) emissivity time series from 2001 to 2021, our findings demonstrate the ability of both Normalized Difference Vegetation Index (NDVI) and emissivity to detect sudden vegetation growth on the gravel plains. Emissivity additionally allows monitoring the extent of desiccated grass over several years after a rainfall event. Our results support a relationship between the change in fractional vegetation cover, the amount of rainfall and emissivity change magnitude. Information from NDVI and emissivity therefore provide complementary information for assessing vegetation in arid environments

    Redefining Disproportionate Arrest Rates: An Exploratory Quasi-Experiment that Reassesses the Role of Skin Tone

    Get PDF
    The New York Times reported that Black Lives Matter was the third most-read subject of 2020. These articles brought to the forefront the question of disparity in arrest rates for darker-skinned people. Questioning arrest disparity is understandable because virtually everything known about disproportionate arrest rates has been a guess, and virtually all prior research on disproportionate arrest rates is questionable because of improper benchmarking (the denominator effect). Current research has highlighted the need to switch from demographic data to skin tone data and start over on disproportionate arrest rate research; therefore, this study explored the relationship between skin tone and disproportionate arrest rates. This study also sought to determine which of the three theories surrounding disproportionate arrests is most predictive of disproportionate rates. The current theories are that disproportionate arrests increase as skin tone gets darker (stereotype threat theory), disproportionate rates are different for Black and Brown people (self-categorization theory), or disproportionate rates apply equally across all darker skin colors (social dominance theory). This study used a quantitative exploratory quasi-experimental design using linear spline regression to analyze arrest rates in Alachua County, Florida, before and after the county’s mandate to reduce arrests as much as possible during the COVID-19 pandemic to protect the prison population. The study was exploratory as no previous study has used skin tone analysis to examine arrest disparity. The findings of this study redefines the understanding of the existence and nature of disparities in arrest rates and offer a solid foundation for additional studies about the relationship between disproportionate arrest rates and skin color

    Open or Closed? Measurement Performance of Open- and Closed-Path Methane Sensors for Mobile Emissions Screening

    Get PDF
    Ground-based vehicle systems are being increasingly used by industry, regulators, and service providers in the upstream oil and gas sector to measure methane emissions. However, the suite of methane sensors affixed to these systems is non-standardized and existing literature displays a scarcity of direct comparisons regarding their measurement performance. Gaussian dispersion models are often used to supplement measured data and derive estimates of emission intensity in screening applications based on data measured by these sensors. Existing literature indicates these models perform with considerable uncertainty. As such, equivalence of performance between existing vehicle-based emission screening systems is difficult to assess. To address this issue, field-based controlled release experiments were conducted to compare concentration data from an open- and closed-path sensor deployed in tandem onboard a vehicle. Performance of a forward Gaussian dispersion model was assessed relative to measured data from both sensors. 801 transects were driven through methane plumes dispersed downwind of a controlled emission source at various measurement distances and driving speeds, as well as a range of atmospheric conditions. Measurement performance was predicated on three primary descriptors of concentration data: the maximum concentration within each plume (maximum enhancement), plume width, and plume area (total methane sampled within the plume). Results showed that the measurement performances of both sensors were not equivalent. Relative to the open-path sensor, the closed-path sensor reported maximum enhancements that were ~40% smaller on average and plume widths that were ~42% larger on average, while measures of plume area displayed near 1:1 parity. Measurement discrepancies are largely explained by differences in sensor measurement frequency and intrinsic sampling mechanisms. Forward Gaussian dispersion model performance displayed uncertainties ranging from 12.3% to 1207.0%. The origin of this uncertainty is largely determined by generalizations of atmospheric stability and simplistic representations of downwind plume migration within the model
    • 

    corecore